Spaces:
Runtime error
Runtime error
""" | |
Find the inspiration for this project as well as the pretrained model | |
we used here: https://github.com/bearpelican/musicautobot | |
""" | |
import gradio as gr | |
from musicautobot.utils.setup_musescore import play_wav | |
from music21.midi.translate import midiFileToStream | |
from pathlib import Path | |
from midi2audio import FluidSynth | |
# from musicautobot.numpy_encode import * | |
from musicautobot.config import default_config | |
from musicautobot.music_transformer import * | |
from musicautobot.utils.midifile import * | |
# from musicautobot.utils.file_processing import process_all | |
import pickle | |
import subprocess | |
import os | |
print(os.getcwd()) | |
# Load the stored data. This is needed to generate the vocab. | |
print('Loading data to build vocabulary.') | |
data_dir = Path('.') | |
data = load_data(data_dir, 'data.pkl') | |
from huggingface_hub import hf_hub_download | |
print('Downloading model.') | |
model_cache_path = hf_hub_download(repo_id="psistolar/musicautobot-fine1", filename="model.pth") | |
from transformers import pipeline | |
classifier = pipeline("sentiment-analysis") | |
# Default config options | |
config = default_config() | |
config['encode_position'] = True | |
print("Building model.") | |
# Load our fine-tuned model | |
learner = music_model_learner( | |
data, | |
config=config.copy(), | |
pretrained_path=model_cache_path | |
) | |
print("Ready to use.") | |
musical_letters = 'abcdefg' | |
from music21 import note | |
def sonify_text(text, sentiment): | |
name = Path('C Major Scale.midi') | |
item = MusicItem.from_file(name, data.vocab) | |
note_names = [f"{letter.upper()}4" for letter in text.lower() if letter in musical_letters] | |
p = music21.stream.Part() | |
if sentiment == 'NEGATIVE': | |
# If negative, use TODO | |
p.append(music21.chord.Chord('A3 C4 E4', type='half')) # i | |
p.append(music21.chord.Chord('F3 A4 C4', type='half')) # VI | |
p.append(music21.chord.Chord('C3 E3 G3', type='half')) # III | |
p.append(music21.chord.Chord('G3 B3 D4', type='half')) # VII | |
else: | |
# If positive, use a partial progression I-V-vi in C Major. | |
p.append(music21.chord.Chord('C4 E4 G4', type='half')) # I | |
p.append(music21.chord.Chord('G3 B3 D4', type='half')) # V | |
p.append(music21.chord.Chord('A3 C4 E4', type='half')) # vi | |
notes = [] | |
for note_name in note_names: | |
note_obj = note.Note(note_name) | |
note_obj.duration.type = "quarter" | |
p.append(note_obj) | |
s = music21.stream.Score([p]) | |
musical_seed = MusicItem.from_stream(s, data.vocab) | |
return musical_seed | |
def process_midi(MIDI_File, Text_to_Sonify, Randomness, Amount_of_Music_to_Add): | |
if MIDI_File is not None: | |
name = Path(MIDI_File.name) | |
else: | |
name = Path('C Major Scale.midi') | |
sonification = False | |
if MIDI_File is None and Text_to_Sonify is not None: | |
sonification = True | |
# create the model input object | |
if sonification: | |
sentiment_analysis = classifier(Text_to_Sonify)[0] | |
sentiment = sentiment_analysis['label'] | |
score = sentiment_analysis['score'] | |
item = sonify_text(Text_to_Sonify, sentiment) | |
# the lower our confidence in the sentiment, the more randomness we inject | |
score = max(0.25, score) | |
temp = Randomness / (100 * score) | |
else: | |
item = MusicItem.from_file(name, data.vocab) | |
temp = Randomness / 100 | |
# full is the prediction appended to the input | |
pred, full = learner.predict( | |
item, | |
n_words=Amount_of_Music_to_Add, | |
temperatures=(temp, temp) | |
) | |
# convert to stream and then MIDI file | |
if sonification: | |
# do not replay the musical seed if sonifying | |
stream = pred.to_stream() | |
else: | |
stream = full.to_stream() | |
out = music21.midi.translate.streamToMidiFile(stream) | |
# save MIDI file | |
out.open('result.midi', 'wb') | |
out.write() | |
out.close() | |
# use fluidsynth to convert MIDI to WAV so the user can hear the output | |
sound_font = "/usr/share/sounds/sf2/FluidR3_GM.sf2" | |
FluidSynth(sound_font).midi_to_audio('result.midi', 'result.wav') | |
# TODO: if we can personalize the file names, let's do that with the text | |
return 'result.wav', 'result.midi' | |
midi_file_desc = """Upload your own MIDI file here (try to keep it small without any fun time signatures). | |
If you do not have a MIDI file, add some text and we will turn it into music! | |
""" | |
article = """# Pop Music Transformer | |
We are using a language model to create music by treating a musical standard MIDI a simple text, with tokens for note values, note duration, and separations to denote movement forward in time. | |
This is all following the great work you can find [at this repo](https://github.com/bearpelican/musicautobot). Moreover check out [their full web app](http://musicautobot.com/). We use the pretrained model they created as well as the utilities for converting between MIDI, audio streams, numpy encodings, and WAV files. | |
## Sonification | |
This is the process of turning something not inherently musical into music. Here we do something pretty simple. We take your input text "pretty cool", get a sentiment score (hard coded right now, model TODO), and use a major progression if it's positive and a minor progression if it's negative, and then factor the score into the randomness of the generated music. We also take the text and extract a melody by taking any of the letters from A to G, which in the example is just "E C". With the simple "E C" melody and a major progression a musical idea is generated. | |
""" | |
iface = gr.Interface( | |
fn=process_midi, | |
inputs=[ | |
gr.inputs.File(optional=True, label=midi_file_desc), | |
"text", | |
gr.inputs.Slider(0, 250, default=100, step=50), | |
gr.inputs.Radio([100, 200, 500], type="value", default=100) | |
], | |
outputs=["audio", "file"], | |
article=article | |
# examples=['C major scale.midi'] | |
) | |
iface.launch() |