File size: 19,314 Bytes
7e02fda
 
 
 
 
e73da9c
 
 
7c56def
e73da9c
7c56def
e73da9c
 
 
7e02fda
7c56def
e73da9c
 
 
19efc84
 
 
fd38f82
19efc84
 
 
4397c18
7c56def
19efc84
 
e73da9c
 
 
 
 
 
 
7c56def
7e02fda
e73da9c
 
 
 
 
7c56def
 
 
 
 
 
 
 
e73da9c
 
7c56def
e73da9c
 
7c56def
e73da9c
 
7c56def
 
 
 
e73da9c
 
 
 
 
7c56def
 
 
e73da9c
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511e6ea
7c56def
511e6ea
7c56def
 
 
511e6ea
 
 
7c56def
511e6ea
7c56def
 
 
 
 
05f1747
 
 
 
 
7c56def
05f1747
7c56def
511e6ea
7c56def
 
511e6ea
 
 
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511e6ea
e73da9c
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19efc84
 
 
 
 
7c56def
 
4397c18
fc577e0
7e02fda
 
e73da9c
 
 
 
 
a0738ba
 
7c56def
 
7e02fda
fc577e0
a0738ba
e73da9c
7c56def
 
 
 
 
7e02fda
 
7c56def
e73da9c
 
a0738ba
7e02fda
 
7c56def
4397c18
7c56def
 
 
e73da9c
7c56def
7e02fda
e73da9c
 
 
 
7c56def
e73da9c
 
4397c18
e73da9c
 
7c56def
e73da9c
7c56def
e73da9c
 
4397c18
e73da9c
 
7c56def
 
 
 
 
 
 
 
 
e73da9c
7c56def
e73da9c
 
4397c18
e73da9c
 
7c56def
 
 
 
 
 
 
 
 
e73da9c
 
4397c18
e73da9c
 
7c56def
e73da9c
 
 
 
 
7c56def
 
 
 
e73da9c
 
 
 
83e4dcb
7c56def
53217a2
 
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53217a2
8684377
 
7c56def
8684377
a0738ba
e73da9c
a0738ba
 
 
 
7c56def
 
a0738ba
 
 
 
7c56def
 
 
 
 
a0738ba
 
53217a2
e73da9c
 
7c56def
 
 
 
 
2be93fd
 
 
 
 
 
 
 
 
 
fc577e0
2be93fd
 
 
 
 
fc577e0
e73da9c
7c56def
7e02fda
 
7c56def
e73da9c
 
2be93fd
e73da9c
92e08c4
7c56def
 
 
 
 
 
 
e73da9c
8684377
c8d986a
 
4397c18
 
 
 
c8d986a
7c56def
 
 
 
 
 
c8d986a
e73da9c
7c56def
 
e73da9c
 
8684377
c8d986a
 
8684377
e73da9c
7c56def
e73da9c
 
 
 
7c56def
c8d986a
7c56def
 
e73da9c
 
7c56def
e73da9c
 
53217a2
 
e73da9c
 
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73da9c
 
7c56def
 
 
 
 
 
 
e73da9c
 
 
 
 
 
 
 
 
7e02fda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Will be fixed soon, but meanwhile:
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
    os.environ['SPACES_ZERO_GPU'] = "1"

import gradio as gr
import random
import torch
import os
from torch import inference_mode
from typing import Optional, List
import numpy as np
from models import load_model
import utils
import spaces
import huggingface_hub
from inversion_utils import inversion_forward_process, inversion_reverse_process


LDM2 = "cvssp/audioldm2"
MUSIC = "cvssp/audioldm2-music"
LDM2_LARGE = "cvssp/audioldm2-large"
STABLEAUD = "chaowenguo/stable-audio-open-1.0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ldm2 = load_model(model_id=LDM2, device=device)
ldm2_large = load_model(model_id=LDM2_LARGE, device=device)
ldm2_music = load_model(model_id=MUSIC, device=device)
ldm_stableaud = load_model(model_id=STABLEAUD, device=device, token=os.getenv('PRIV_TOKEN'))


def randomize_seed_fn(seed, randomize_seed):
    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)
    torch.manual_seed(seed)
    return seed


def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src, duration, save_compute):
    # ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)

    with inference_mode():
        w0 = ldm_stable.vae_encode(x0)

    # find Zs and wts - forward process
    _, zs, wts, extra_info = inversion_forward_process(ldm_stable, w0, etas=1,
                                                       prompts=[prompt_src],
                                                       cfg_scales=[cfg_scale_src],
                                                       num_inference_steps=num_diffusion_steps,
                                                       numerical_fix=True,
                                                       duration=duration,
                                                       save_compute=save_compute)
    return zs, wts, extra_info


def sample(ldm_stable, zs, wts, extra_info, prompt_tar, tstart, cfg_scale_tar, duration, save_compute):
    # reverse process (via Zs and wT)
    tstart = torch.tensor(tstart, dtype=torch.int)
    w0, _ = inversion_reverse_process(ldm_stable, xT=wts, tstart=tstart,
                                      etas=1., prompts=[prompt_tar],
                                      neg_prompts=[""], cfg_scales=[cfg_scale_tar],
                                      zs=zs[:int(tstart)],
                                      duration=duration,
                                      extra_info=extra_info,
                                      save_compute=save_compute)

    # vae decode image
    with inference_mode():
        x0_dec = ldm_stable.vae_decode(w0)

    if 'stable-audio' not in ldm_stable.model_id:
        if x0_dec.dim() < 4:
            x0_dec = x0_dec[None, :, :, :]

        with torch.no_grad():
            audio = ldm_stable.decode_to_mel(x0_dec)
    else:
        audio = x0_dec.squeeze(0).T

    return (ldm_stable.get_sr(), audio.squeeze().cpu().numpy())


def get_duration(input_audio,
                 model_id: str,
                 do_inversion: bool,
                 wts: Optional[torch.Tensor], zs: Optional[torch.Tensor], extra_info: Optional[List],
                 saved_inv_model: str,
                 source_prompt: str = "",
                 target_prompt: str = "",
                 steps: int = 200,
                 cfg_scale_src: float = 3.5,
                 cfg_scale_tar: float = 12,
                 t_start: int = 45,
                 randomize_seed: bool = True,
                 save_compute: bool = True,
                 oauth_token: Optional[gr.OAuthToken] = None):
    if model_id == LDM2:
        factor = 1
    elif model_id == LDM2_LARGE:
        factor = 2.5
    elif model_id == STABLEAUD:
        factor = 3.2
    else:  # MUSIC
        factor = 1

    forwards = 0
    if do_inversion or randomize_seed:
        forwards = steps if source_prompt == "" else steps * 2  # x2 when there is a prompt text
    forwards += int(t_start / 100 * steps) * 2

    duration = min(utils.get_duration(input_audio), utils.MAX_DURATION)
    time_for_maxlength = factor * forwards * 0.15  # 0.25 is the time per forward pass
    
    if model_id != STABLEAUD:
        time_for_maxlength = time_for_maxlength / utils.MAX_DURATION * duration
        
    print('expected time:', time_for_maxlength)
    spare_time = 5
    return max(10, time_for_maxlength + spare_time)


def verify_model_params(model_id: str, input_audio, src_prompt: str, tar_prompt: str, cfg_scale_src: float,
                        oauth_token: gr.OAuthToken | None):
    if input_audio is None:
        raise gr.Error('Input audio missing!')

    if tar_prompt == "":
        raise gr.Error("Please provide a target prompt to edit the audio.")

    if src_prompt != "":
        if model_id == STABLEAUD and cfg_scale_src != 1:
            gr.Info("Consider using Source Guidance Scale=1 for Stable Audio Open 1.0.")
        elif model_id != STABLEAUD and cfg_scale_src != 3:
            gr.Info(f"Consider using Source Guidance Scale=3 for {model_id}.")

    if model_id == STABLEAUD:
        if oauth_token is None:
            raise gr.Error("You must be logged in to use Stable Audio Open 1.0. Please log in and try again.")
        try:
            huggingface_hub.get_hf_file_metadata(huggingface_hub.hf_hub_url(STABLEAUD, 'transformer/config.json'),
                                                 token=oauth_token.token)
            print('Has Access')
        # except huggingface_hub.utils._errors.GatedRepoError:
        except huggingface_hub.errors.GatedRepoError:
            raise gr.Error("You need to accept the license agreement to use Stable Audio Open 1.0. "
                           "Visit the <a href='https://huggingface.co/stabilityai/stable-audio-open-1.0'>"
                           "model page</a> to get access.")


@spaces.GPU(duration=get_duration)
def edit(input_audio,
         model_id: str,
         do_inversion: bool,
         wts: Optional[torch.Tensor], zs: Optional[torch.Tensor], extra_info: Optional[List],
         saved_inv_model: str,
         source_prompt: str = "",
         target_prompt: str = "",
         steps: int = 200,
         cfg_scale_src: float = 3.5,
         cfg_scale_tar: float = 12,
         t_start: int = 45,
         randomize_seed: bool = True,
         save_compute: bool = True,
         oauth_token: Optional[gr.OAuthToken] = None):
    print(model_id)
    if model_id == LDM2:
        ldm_stable = ldm2
    elif model_id == LDM2_LARGE:
        ldm_stable = ldm2_large
    elif model_id == STABLEAUD:
        ldm_stable = ldm_stableaud
    else:  # MUSIC
        ldm_stable = ldm2_music

    ldm_stable.model.scheduler.set_timesteps(steps, device=device)

    # If the inversion was done for a different model, we need to re-run the inversion
    if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id):
        do_inversion = True

    if input_audio is None:
        raise gr.Error('Input audio missing!')
    x0, _, duration = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device,
                                       stft=('stable-audio' not in ldm_stable.model_id), model_sr=ldm_stable.get_sr())
    if wts is None or zs is None:
        do_inversion = True

    if do_inversion or randomize_seed:  # always re-run inversion
        zs_tensor, wts_tensor, extra_info_list = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt,
                                                        num_diffusion_steps=steps,
                                                        cfg_scale_src=cfg_scale_src,
                                                        duration=duration,
                                                        save_compute=save_compute)
        wts = wts_tensor
        zs = zs_tensor
        extra_info = extra_info_list
        saved_inv_model = model_id
        do_inversion = False
    else:
        wts_tensor = wts.to(device)
        zs_tensor = zs.to(device)
        extra_info_list = [e.to(device) for e in extra_info if e is not None]

    output = sample(ldm_stable, zs_tensor, wts_tensor, extra_info_list, prompt_tar=target_prompt,
                    tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar, duration=duration,
                    save_compute=save_compute)

    return output, wts.cpu(), zs.cpu(), [e.cpu() for e in extra_info if e is not None], saved_inv_model, do_inversion
    # return output, wtszs_file, saved_inv_model, do_inversion


def get_example():
    case = [
        ['Examples/Beethoven.mp3',
         '',
         'A recording of an arcade game soundtrack.',
         45,
         'cvssp/audioldm2-music',
         '27s',
         'Examples/Beethoven_arcade.mp3',
         ],
        ['Examples/Beethoven.mp3',
         'A high quality recording of wind instruments and strings playing.',
         'A high quality recording of a piano playing.',
         45,
         'cvssp/audioldm2-music',
         '27s',
         'Examples/Beethoven_piano.mp3',
         ],
        ['Examples/Beethoven.mp3',
         '',
         'Heavy Rock.',
         40,
         'stabilityai/stable-audio-open-1.0',
         '27s',
         'Examples/Beethoven_rock.mp3',
         ],
        ['Examples/ModalJazz.mp3',
         'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.',
         'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.',
         45,
         'cvssp/audioldm2-music',
         '106s',
         'Examples/ModalJazz_banjo.mp3',],
        ['Examples/Shadows.mp3',
         '',
         '8-bit arcade game soundtrack.',
         40,
         'stabilityai/stable-audio-open-1.0',
         '34s',
         'Examples/Shadows_arcade.mp3',],
        ['Examples/Cat.mp3',
         '',
         'A dog barking.',
         75,
         'cvssp/audioldm2-large',
         '10s',
         'Examples/Cat_dog.mp3',]
    ]
    return case


intro = """
<h1 style="font-weight: 1000; text-align: center; margin: 0px;"> ZETA Editing 🎧 </h1>
<h2 style="font-weight: 1000; text-align: center; margin: 0px;">
    Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2>
<h3 style="margin-top: 0px; margin-bottom: 10px; text-align: center;">
    <a href="https://arxiv.org/abs/2402.10009">[Paper]</a>&nbsp;|&nbsp;
    <a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a>&nbsp;|&nbsp;
    <a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a>
</h3>

<p style="font-size: 1rem; line-height: 1.2em;">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" >
</a>
</p>
<p style="margin: 0px;">
<b>NEW - 15.10.24:</b> You can now edit using <b>Stable Audio Open 1.0</b>.
You must be <b>logged in</b> after accepting the
<b><a href="https://huggingface.co/stabilityai/stable-audio-open-1.0">license agreement</a></b> to use it.</br>
</p>
<ul style="padding-left:40px; line-height:normal;">
<li style="margin: 0px;">Prompts behave differently - e.g.,
try "8-bit arcade" directly instead of "a recording of...". Check out the new examples below!</li>
<li style="margin: 0px;">Try to play around <code>T-start=40%</code>.</li>
<li style="margin: 0px;">Under "More Options": Use <code>Source Guidance Scale=1</code>, 
and you can try fewer timesteps (even 20!).</li>
<li style="margin: 0px;">Stable Audio Open is a general-audio model.
For better music editing, duplicate the space and change to a
<a href="https://huggingface.co/models?other=base_model:finetune:stabilityai/stable-audio-open-1.0">
fine-tuned model for music</a>.</li>
</ul>
<p>
<b>NEW - 15.10.24:</b> Parallel editing is enabled by default.
To disable, uncheck <code>Efficient editing</code> under "More Options".
Saves a bit of time.
</p>
"""


help = """
<div style="font-size:medium">
<b>Instructions:</b><br>
<ul style="line-height: normal">
<li>You must provide an input audio and a target prompt to edit the audio. </li>
<li>T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance.
Lower value -> favor fidelity. Higher value -> apply a stronger edit.</li>
<li>Make sure that you use a model version that is suitable for your input audio.
For example, use AudioLDM2-music for music while AudioLDM2-large for general audio.
</li>
<li>You can additionally provide a source prompt to guide even further the editing process.</li>
<li>Longer input will take more time.</li>
<li><strong>Unlimited length</strong>: This space automatically trims input audio to a maximum length of 30 seconds.
For unlimited length, duplicated the space, and change the
<code style="display:inline; background-color: lightgrey;">MAX_DURATION</code> parameter
inside <code style="display:inline; background-color: lightgrey;">utils.py</code>
to <code style="display:inline; background-color: lightgrey;">None</code>.
</li>
</ul>
</div>

"""

css = '.gradio-container {max-width: 1000px !important; padding-top: 1.5rem !important;}' \
      '.audio-upload .wrap {min-height: 0px;}'

# with gr.Blocks(css='style.css') as demo:
with gr.Blocks(css=css) as demo:
    def reset_do_inversion(do_inversion_user, do_inversion):
        # do_inversion = gr.State(value=True)
        do_inversion = True
        do_inversion_user = True
        return do_inversion_user, do_inversion

    # handle the case where the user clicked the button but the inversion was not done
    def clear_do_inversion_user(do_inversion_user):
        do_inversion_user = False
        return do_inversion_user

    def post_match_do_inversion(do_inversion_user, do_inversion):
        if do_inversion_user:
            do_inversion = True
            do_inversion_user = False
        return do_inversion_user, do_inversion

    gr.HTML(intro)

    wts = gr.State()
    zs = gr.State()
    extra_info = gr.State()
    saved_inv_model = gr.State()
    do_inversion = gr.State(value=True)  # To save some runtime when editing the same thing over and over
    do_inversion_user = gr.State(value=False)

    with gr.Group():
        gr.Markdown("💡 **note**: input longer than **30 sec** is automatically trimmed "
                    "(for unlimited input, see the Help section below)")
        with gr.Row(equal_height=True):
            input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath",
                                   editable=True, label="Input Audio", interactive=True, scale=1, format='wav',
                                   elem_classes=['audio-upload'])
            output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1, format='wav')

    with gr.Row():
        tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output",
                                placeholder="a recording of a happy upbeat arcade game soundtrack",
                                lines=2, interactive=True)

    with gr.Row():
        t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3,
                            info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.")
        model_id = gr.Dropdown(label="Model Version",
                               choices=[LDM2,
                                        LDM2_LARGE,
                                        MUSIC,
                                        STABLEAUD],
                               info="Choose a checkpoint suitable for your audio and edit",
                               value="cvssp/audioldm2-music", interactive=True, type="value", scale=2)
    with gr.Row():
        submit = gr.Button("Edit", variant="primary", scale=3)
        gr.LoginButton(value="Login to HF (For Stable Audio)", scale=1)

    with gr.Accordion("More Options", open=False):
        with gr.Row():
            src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True,
                                    info="Optional: Describe the original audio input",
                                    placeholder="A recording of a happy upbeat classical music piece",)

        with gr.Row(equal_height=True):
            cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None,
                                      label="Source Guidance Scale", interactive=True, scale=1)
            cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None,
                                      label="Target Guidance Scale", interactive=True, scale=1)
            steps = gr.Number(value=50, step=1, minimum=10, maximum=300,
                              info="Higher values (e.g. 200) yield higher-quality generation.",
                              label="Num Diffusion Steps", interactive=True, scale=2)
        with gr.Row(equal_height=True):
            seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
            randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
            save_compute = gr.Checkbox(label='Efficient editing', value=True)
            length = gr.Number(label="Length", interactive=False, visible=False)

    with gr.Accordion("Help💡", open=False):
        gr.HTML(help)

    submit.click(
            fn=verify_model_params,
            inputs=[model_id, input_audio, src_prompt, tar_prompt, cfg_scale_src],
            outputs=[]
        ).success(
            fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=[seed], queue=False
        ).then(
            fn=clear_do_inversion_user, inputs=[do_inversion_user], outputs=[do_inversion_user]
        ).then(
            fn=edit,
            inputs=[input_audio,
                    model_id,
                    do_inversion,
                    wts, zs, extra_info,
                    saved_inv_model,
                    src_prompt,
                    tar_prompt,
                    steps,
                    cfg_scale_src,
                    cfg_scale_tar,
                    t_start,
                    randomize_seed,
                    save_compute,
                    ],
            outputs=[output_audio, wts, zs, extra_info, saved_inv_model, do_inversion]
        ).success(
            fn=post_match_do_inversion,
            inputs=[do_inversion_user, do_inversion],
            outputs=[do_inversion_user, do_inversion]
        )

    # If sources changed we have to rerun inversion
    gr.on(
        triggers=[input_audio.change, src_prompt.change, model_id.change, cfg_scale_src.change,
                  steps.change, save_compute.change],
        fn=reset_do_inversion,
        inputs=[do_inversion_user, do_inversion],
        outputs=[do_inversion_user, do_inversion]
    )

    gr.Examples(
        label="Examples",
        examples=get_example(),
        inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio],
        outputs=[output_audio]
    )

    demo.queue()
    demo.launch(state_session_capacity=15)