Spaces:
Running
Running
import gradio as gr | |
import random | |
import torch | |
import torchaudio | |
from torch import inference_mode | |
from tempfile import NamedTemporaryFile | |
import numpy as np | |
from models import load_model | |
import utils | |
from inversion_utils import inversion_forward_process, inversion_reverse_process | |
# current_loaded_model = "cvssp/audioldm2-music" | |
# # current_loaded_model = "cvssp/audioldm2-music" | |
# ldm_stable = load_model(current_loaded_model, device, 200) # deafult model | |
LDM2 = "cvssp/audioldm2" | |
MUSIC = "cvssp/audioldm2-music" | |
LDM2_LARGE = "cvssp/audioldm2-large" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
ldm2 = load_model(model_id=LDM2, device=device) | |
ldm2_large = load_model(model_id=LDM2_LARGE, device=device) | |
ldm2_music = load_model(model_id=MUSIC, device=device) | |
def randomize_seed_fn(seed, randomize_seed): | |
if randomize_seed: | |
seed = random.randint(0, np.iinfo(np.int32).max) | |
torch.manual_seed(seed) | |
return seed | |
def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src): # , ldm_stable): | |
ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device) | |
with inference_mode(): | |
w0 = ldm_stable.vae_encode(x0) | |
# find Zs and wts - forward process | |
_, zs, wts = inversion_forward_process(ldm_stable, w0, etas=1, | |
prompts=[prompt_src], | |
cfg_scales=[cfg_scale_src], | |
prog_bar=True, | |
num_inference_steps=num_diffusion_steps, | |
numerical_fix=True) | |
return zs, wts | |
def sample(ldm_stable, zs, wts, steps, prompt_tar, tstart, cfg_scale_tar): # , ldm_stable): | |
# reverse process (via Zs and wT) | |
tstart = torch.tensor(tstart, dtype=torch.int) | |
skip = steps - tstart | |
w0, _ = inversion_reverse_process(ldm_stable, xT=wts, skips=steps - skip, | |
etas=1., prompts=[prompt_tar], | |
neg_prompts=[""], cfg_scales=[cfg_scale_tar], | |
prog_bar=True, | |
zs=zs[:int(steps - skip)]) | |
# vae decode image | |
with inference_mode(): | |
x0_dec = ldm_stable.vae_decode(w0) | |
if x0_dec.dim() < 4: | |
x0_dec = x0_dec[None, :, :, :] | |
with torch.no_grad(): | |
audio = ldm_stable.decode_to_mel(x0_dec) | |
f = NamedTemporaryFile("wb", suffix=".wav", delete=False) | |
torchaudio.save(f.name, audio, sample_rate=16000) | |
return f.name | |
def edit(input_audio, | |
model_id: str, | |
do_inversion: bool, | |
wts: gr.State, zs: gr.State, saved_inv_model: str, | |
source_prompt="", | |
target_prompt="", | |
steps=200, | |
cfg_scale_src=3.5, | |
cfg_scale_tar=12, | |
t_start=45, | |
randomize_seed=True): | |
print(model_id) | |
if model_id == LDM2: | |
ldm_stable = ldm2 | |
elif model_id == LDM2_LARGE: | |
ldm_stable = ldm2_large | |
else: # MUSIC | |
ldm_stable = ldm2_music | |
# If the inversion was done for a different model, we need to re-run the inversion | |
if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id): | |
do_inversion = True | |
x0 = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device) | |
if do_inversion or randomize_seed: # always re-run inversion | |
zs_tensor, wts_tensor = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt, | |
num_diffusion_steps=steps, | |
cfg_scale_src=cfg_scale_src) | |
wts = gr.State(value=wts_tensor) | |
zs = gr.State(value=zs_tensor) | |
saved_inv_model = model_id | |
do_inversion = False | |
# make sure t_start is in the right limit | |
# t_start = change_tstart_range(t_start, steps) | |
output = sample(ldm_stable, zs.value, wts.value, steps, prompt_tar=target_prompt, | |
tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar) | |
return output, wts, zs, saved_inv_model, do_inversion | |
def get_example(): | |
case = [ | |
['Examples/Beethoven.wav', | |
'', | |
'A recording of an arcade game soundtrack.', | |
45, | |
'cvssp/audioldm2-music', | |
'27s', | |
'Examples/Beethoven_arcade.wav', | |
], | |
['Examples/Beethoven.wav', | |
'A high quality recording of wind instruments and strings playing.', | |
'A high quality recording of a piano playing.', | |
45, | |
'cvssp/audioldm2-music', | |
'27s', | |
'Examples/Beethoven_piano.wav', | |
], | |
['Examples/ModalJazz.wav', | |
'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.', | |
'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.', | |
45, | |
'cvssp/audioldm2-music', | |
'106s', | |
'Examples/ModalJazz_banjo.wav',], | |
['Examples/Cat.wav', | |
'', | |
'A dog barking.', | |
75, | |
'cvssp/audioldm2-large', | |
'10s', | |
'Examples/Cat_dog.wav',] | |
] | |
return case | |
intro = """ | |
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> ZETA Editing 🎧 </h1> | |
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2> | |
<h3 style="margin-bottom: 10px; text-align: center;"> | |
<a href="https://arxiv.org/abs/2402.10009">[Paper]</a> | | |
<a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a> | | |
<a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a> | |
</h3> | |
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em"> | |
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. | |
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" ></a> | |
</p> | |
""" | |
help = """ | |
<b>Instructions:</b><br> | |
Provide an input audio and a target prompt to edit the audio. <br> | |
T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance. | |
Lower value -> favor fidelity. Higher value -> apply a stronger edit.<br> | |
Make sure that you use an AudioLDM2 version that is suitable for your input audio. | |
For example, use the music version for music and the large version for general audio. | |
</p> | |
<p style="font-size:larger"> | |
You can additionally provide a source prompt to guide even further the editing process. | |
</p> | |
<p style="font-size:larger">Longer input will take more time.</p> | |
""" | |
with gr.Blocks(css='style.css') as demo: | |
def reset_do_inversion(): | |
do_inversion = gr.State(value=True) | |
return do_inversion | |
gr.HTML(intro) | |
wts = gr.State() | |
zs = gr.State() | |
saved_inv_model = gr.State() | |
# current_loaded_model = gr.State(value="cvssp/audioldm2-music") | |
# ldm_stable = load_model("cvssp/audioldm2-music", device, 200) | |
# ldm_stable = gr.State(value=ldm_stable) | |
do_inversion = gr.State(value=True) # To save some runtime when editing the same thing over and over | |
with gr.Group(): | |
gr.Markdown("💡 **note**: input longer than **30 sec** is automatically trimmed (for unlimited input you may duplicate the space)") | |
with gr.Row(): | |
input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input Audio", | |
interactive=True, scale=1) | |
output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1) | |
with gr.Row(): | |
tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output", | |
placeholder="a recording of a happy upbeat arcade game soundtrack", | |
lines=2, interactive=True) | |
with gr.Row(): | |
t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3, | |
info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.") | |
# model_id = gr.Radio(label="AudioLDM2 Version", | |
model_id = gr.Dropdown(label="AudioLDM2 Version", | |
choices=["cvssp/audioldm2", | |
"cvssp/audioldm2-large", | |
"cvssp/audioldm2-music"], | |
info="Choose a checkpoint suitable for your intended audio and edit", | |
value="cvssp/audioldm2-music", interactive=True, type="value", scale=2) | |
with gr.Row(): | |
with gr.Column(): | |
submit = gr.Button("Edit") | |
with gr.Accordion("More Options", open=False): | |
with gr.Row(): | |
src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True, | |
info="Optional: Describe the original audio input", | |
placeholder="A recording of a happy upbeat classical music piece",) | |
with gr.Row(): | |
cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None, | |
label="Source Guidance Scale", interactive=True, scale=1) | |
cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None, | |
label="Target Guidance Scale", interactive=True, scale=1) | |
steps = gr.Number(value=50, step=1, minimum=20, maximum=300, | |
info="Higher values (e.g. 200) yield higher-quality generation.", | |
label="Num Diffusion Steps", interactive=True, scale=1) | |
with gr.Row(): | |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True) | |
randomize_seed = gr.Checkbox(label='Randomize seed', value=False) | |
length = gr.Number(label="Length", interactive=False, visible=False) | |
with gr.Accordion("Help💡", open=False): | |
gr.HTML(help) | |
submit.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=[seed], queue=False).then( | |
fn=edit, | |
inputs=[input_audio, | |
model_id, | |
do_inversion, | |
# current_loaded_model, ldm_stable, | |
wts, zs, saved_inv_model, | |
src_prompt, | |
tar_prompt, | |
steps, | |
cfg_scale_src, | |
cfg_scale_tar, | |
t_start, | |
randomize_seed | |
], | |
outputs=[output_audio, wts, zs, saved_inv_model, do_inversion] # , current_loaded_model, ldm_stable], | |
) | |
# If sources changed we have to rerun inversion | |
input_audio.change(fn=reset_do_inversion, outputs=[do_inversion]) | |
src_prompt.change(fn=reset_do_inversion, outputs=[do_inversion]) | |
model_id.change(fn=reset_do_inversion, outputs=[do_inversion]) | |
steps.change(fn=reset_do_inversion, outputs=[do_inversion]) | |
gr.Examples( | |
label="Examples", | |
examples=get_example(), | |
inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio], | |
outputs=[output_audio] | |
) | |
demo.queue() | |
demo.launch() | |