Spaces:
Running
Running
from transformers import BertTokenizer, BertModel | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
model = BertModel.from_pretrained("bert-base-uncased") | |
text = "Replace me by any text you'd like." | |
def bert_embeddings(text): | |
# text = "Replace me by any text you'd like." | |
encoded_input = tokenizer(text, return_tensors="pt") | |
output = model(**encoded_input) | |
return output | |
from transformers import RobertaTokenizer, RobertaModel | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model = RobertaModel.from_pretrained("roberta-base") | |
text = "Replace me by any text you'd like." | |
def Roberta_embeddings(text): | |
# text = "Replace me by any text you'd like." | |
encoded_input = tokenizer(text, return_tensors="pt") | |
output = model(**encoded_input) | |
return output | |
from transformers import BartTokenizer, BartModel | |
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") | |
model = BartModel.from_pretrained("facebook/bart-base") | |
text = "Replace me by any text you'd like." | |
def bart_embeddings(text): | |
# text = "Replace me by any text you'd like." | |
encoded_input = tokenizer(text, return_tensors="pt") | |
output = model(**encoded_input) | |
return output | |