Spaces:
Running
Running
from inspect import getargs | |
import logging | |
import os | |
import random | |
from datetime import datetime | |
import bisect | |
import copy | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from torch import optim | |
from torch.cuda.amp import GradScaler | |
import faulthandler | |
import pathlib | |
try: | |
import wandb | |
except ImportError: | |
wandb = None | |
try: | |
import torch.utils.tensorboard as tensorboard | |
except ImportError: | |
tensorboard = None | |
try: | |
import horovod.torch as hvd | |
except ImportError: | |
hvd = None | |
from open_clip import create_model_and_transforms, trace_model, create_model | |
from training.data import get_data | |
from training.distributed import is_master, init_distributed_device, world_info_from_env | |
from training.logger import setup_logging | |
from training.params import parse_args | |
from training.scheduler import cosine_lr | |
from training.train import train_one_epoch, evaluate | |
from open_clip.utils import dataset_split, get_optimizer | |
def maintain_ckpts(args, startidx, all_idx_len): | |
for i in reversed(range(startidx, all_idx_len)): | |
if os.path.exists(os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt")): | |
os.rename( | |
os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), | |
os.path.join(args.checkpoint_path, f"epoch_top_{i+1}.pt"), | |
) | |
if os.path.exists( | |
os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt") | |
): | |
os.remove(os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt")) | |
return | |
def update_top_k_performance( | |
new_metrics_inputs, current_top_k_ckpt_metrics, args, ckpt, bignumbetter=True | |
): | |
""" | |
Record the top-k performance of the current epoch. | |
current_top_k_metrics is a dictionary of the form: {1: top_1_ckpt_measure, 2: top_2_ckpt_measure, ...} | |
""" | |
if isinstance(new_metrics_inputs, (list, tuple)): | |
new_metrics_inputs = np.mean(new_metrics_inputs) | |
return update_top_k_performance( | |
new_metrics_inputs, | |
current_top_k_ckpt_metrics, | |
args=args, | |
ckpt=ckpt, | |
bignumbetter=bignumbetter, | |
) | |
elif isinstance(new_metrics_inputs, dict): | |
new_metrics_inputs = np.mean(list(new_metrics_inputs.values())) | |
return update_top_k_performance( | |
new_metrics_inputs, | |
current_top_k_ckpt_metrics, | |
args=args, | |
ckpt=ckpt, | |
bignumbetter=bignumbetter, | |
) | |
elif isinstance(new_metrics_inputs, (float, int)): | |
update_flag = {k: False for k in current_top_k_ckpt_metrics.keys()} | |
sorted_keys = sorted(current_top_k_ckpt_metrics.keys()) | |
sorted_values = sorted( | |
current_top_k_ckpt_metrics.values(), reverse=bignumbetter | |
) | |
sorted_values_ = copy.deepcopy(sorted_values) | |
sorted_values.append(new_metrics_inputs) | |
sorted_values = sorted(sorted_values, reverse=bignumbetter) | |
sorted_values = sorted_values[:-1] | |
if sorted_values == sorted_values_: | |
return current_top_k_ckpt_metrics, new_metrics_inputs | |
else: | |
for i in range(len(sorted_keys)): | |
if current_top_k_ckpt_metrics[sorted_keys[i]] != sorted_values[i]: | |
current_top_k_ckpt_metrics[sorted_keys[i]] = sorted_values[i] | |
update_flag[sorted_keys[i]] = True | |
for i in range(len(update_flag)): | |
if update_flag[i]: | |
maintain_ckpts(args, i, len(sorted_keys)) | |
torch.save( | |
ckpt, | |
os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), | |
) | |
break | |
return current_top_k_ckpt_metrics, new_metrics_inputs | |
# def updateifNone(a, b): | |
# a = b if None else a | |
# return a | |
def is_pretrained_params(n): | |
return ( | |
n.startswith("transformer") | |
or n in ["positional_embedding", "text_projection"] | |
or n.startswith("token_embedding") | |
or n.startswith("ln_final") | |
or n.startswith("logit_scale_t") | |
) | |
def random_seed(seed=42, rank=0): | |
torch.manual_seed(seed + rank) | |
np.random.seed(seed + rank) | |
random.seed(seed + rank) | |
def main(): | |
args = parse_args() | |
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule? | |
args.amodel = args.amodel.replace("/", "-") | |
# download sizes.json file | |
# (yusong): the below two lines are for debug | |
# print("setting up faulthandler") | |
# faulthandler.register(10) | |
random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
torch.cuda.manual_seed_all(args.seed) | |
np.random.seed(args.seed) | |
if args.tmodel == "bert" or args.tmodel == "roberta" or args.tmodel == "bart": | |
assert ( | |
args.pretrained == "" or args.pretrained is None | |
), "bert/roberta/bart text encoder does not support pretrained models." | |
# get the name of the experiments | |
if args.name is None: | |
args.name = "-".join( | |
[ | |
datetime.now().strftime("%Y_%m_%d-%H_%M_%S"), | |
f"model_{args.amodel}", | |
f"lr_{args.lr}", | |
f"b_{args.batch_size}", | |
f"j_{args.workers}", | |
f"p_{args.precision}", | |
] | |
) | |
# discover initial world args early so we can log properly | |
args.distributed = False | |
args.local_rank, args.rank, args.world_size = world_info_from_env() | |
if args.remotedata and is_master(args): | |
for dataset_name in args.datasetnames: | |
for split in dataset_split[dataset_name]: | |
if not os.path.exists(f"./json_files/{dataset_name}/{split}"): | |
os.makedirs(f"./json_files/{dataset_name}/{split}") | |
os.system( | |
f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json" | |
) | |
args.log_path = None | |
if is_master(args, local=args.log_local): | |
log_base_path = os.path.join(args.logs, args.name) | |
os.makedirs(log_base_path, exist_ok=True) | |
log_filename = f"out-{args.rank}" if args.log_local else "out.log" | |
args.log_path = os.path.join(log_base_path, log_filename) | |
if os.path.exists(args.log_path): | |
print( | |
"Error. Experiment already exists. Use --name {} to specify a new experiment." | |
) | |
return -1 | |
# Set logger | |
args.log_level = logging.DEBUG if args.debug else logging.INFO | |
setup_logging(args.log_path, args.log_level) | |
# fully initialize distributed device environment | |
device = init_distributed_device(args) | |
args.wandb = "wandb" in args.report_to or "all" in args.report_to | |
args.tensorboard = "tensorboard" in args.report_to or "all" in args.report_to | |
if is_master(args): | |
args.tensorboard_path = ( | |
os.path.join(args.logs, args.name, "tensorboard") | |
if args.tensorboard | |
else "" | |
) | |
args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints") | |
for dirname in [args.tensorboard_path, args.checkpoint_path]: | |
if dirname: | |
os.makedirs(dirname, exist_ok=True) | |
else: | |
args.tensorboard_path = "" | |
args.checkpoint_path = "" | |
if args.copy_codebase: | |
copy_codebase(args) | |
assert args.precision in ["amp", "fp16", "fp32"] | |
if args.precision == "fp16": | |
logging.warning( | |
"It is recommended to use AMP mixed-precision instead of FP16. " | |
"FP16 support needs further verification and tuning, especially for train." | |
) | |
if args.horovod: | |
logging.info( | |
f"Running in horovod mode with multiple processes / nodes. Device: {args.device}." | |
f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." | |
) | |
elif args.distributed: | |
logging.info( | |
f"Running in distributed mode with multiple processes. Device: {args.device}." | |
f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." | |
) | |
else: | |
logging.info(f"Running with a single process. Device {args.device}.") | |
logging.info(f"openai cache dir: {os.path.expanduser(args.openai_model_cache_dir)}") | |
model, model_cfg = create_model( | |
args.amodel, | |
args.tmodel, | |
args.pretrained, | |
precision=args.precision, | |
device=device, | |
jit=args.torchscript, | |
force_quick_gelu=args.force_quick_gelu, | |
openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir), | |
skip_params=True, | |
pretrained_audio=args.pretrained_audio, | |
pretrained_text=args.pretrained_text, | |
enable_fusion=args.enable_fusion, | |
fusion_type=args.fusion_type, | |
) | |
if args.horovod: | |
with torch.no_grad(): | |
for param in model.parameters(): | |
param.set_(param.contiguous()) | |
if args.trace: | |
model = trace_model(model, batch_size=args.batch_size, device=device) | |
if is_master(args): | |
logging.info("Model:") | |
logging.info(f"{str(model)}") | |
logging.info("Params:") | |
params_file = os.path.join(args.logs, args.name, "params.txt") | |
with open(params_file, "w") as f: | |
for name in sorted(vars(args)): | |
val = getattr(args, name) | |
logging.info(f" {name}: {val}") | |
f.write(f"{name}: {val}\n") | |
if args.distributed and not args.horovod: | |
if args.use_bn_sync: | |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
ddp_args = {} | |
if args.ddp_static_graph: | |
# this doesn't exist in older PyTorch, arg only added if enabled | |
ddp_args["static_graph"] = True | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[device], find_unused_parameters=True, **ddp_args | |
) | |
data = get_data(args, model_cfg) | |
assert len(data), "At least one train or eval dataset must be specified." | |
if args.trace: | |
assert "train" not in data, "Cannot train with traced model" | |
exclude = ( | |
lambda n, p: p.ndim < 2 | |
or "bn" in n | |
or "ln" in n | |
or "bias" in n | |
or "logit_scale" in n | |
) | |
include = lambda n, p: not exclude(n, p) | |
named_parameters = list(model.named_parameters()) | |
# freeze text encoder | |
text_freeze_parameters = [p for n, p in named_parameters if "text_branch" in n] | |
if args.freeze_text: | |
print("Freeze Text!!!!") | |
for k in text_freeze_parameters: | |
k.requires_grad = False | |
gain_or_bias_params = [ | |
p for n, p in named_parameters if exclude(n, p) and p.requires_grad | |
] | |
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad] | |
# set wd-related params to 0 if use adam optimizer | |
if args.optimizer == "adam": | |
args.wd = 0 | |
args.wd_pretrained = 0 | |
args.wd_new = 0 | |
if args.train_data is None: | |
optimizer = None | |
scheduler = None | |
else: | |
total_steps = data["train"].dataloader.num_batches * args.epochs | |
if args.split_opt: | |
for x in ["lr", "beta1", "beta2", "eps", "wd"]: | |
for y in ["_new", "_pretrained"]: | |
if getattr(args, x + y) is None: | |
setattr(args, x + y, getattr(args, x)) | |
gain_or_bias_pretrained_params = [ | |
p | |
for n, p in named_parameters | |
if (exclude(n, p) and p.requires_grad) and is_pretrained_params(n) | |
] | |
rest_pretrained_params = [ | |
p | |
for n, p in named_parameters | |
if (include(n, p) and p.requires_grad) and is_pretrained_params(n) | |
] | |
gain_or_bias_new_params = [ | |
p | |
for n, p in named_parameters | |
if (exclude(n, p) and p.requires_grad) and (not is_pretrained_params(n)) | |
] | |
rest_new_params = [ | |
p | |
for n, p in named_parameters | |
if (include(n, p) and p.requires_grad) and (not is_pretrained_params(n)) | |
] | |
pretrained_params_optimizer = get_optimizer( | |
[ | |
{"params": gain_or_bias_pretrained_params, "weight_decay": 0.0}, | |
{ | |
"params": rest_pretrained_params, | |
"weight_decay": args.wd_pretrained, | |
}, | |
], | |
lr=args.lr_pretrained, | |
betas=(args.beta1_pretrained, args.beta2_pretrained), | |
eps=args.eps_pretrained, | |
momentum=args.momentum_pretrained, | |
optimizer_name=args.optimizer, | |
) | |
pretrained_params_scheduler = cosine_lr( | |
pretrained_params_optimizer, | |
args.lr_pretrained, | |
args.warmup, | |
total_steps, | |
) | |
new_params_optimizer = get_optimizer( | |
[ | |
{"params": gain_or_bias_new_params, "weight_decay": 0.0}, | |
{"params": rest_new_params, "weight_decay": args.wd_new}, | |
], | |
lr=args.lr_new, | |
betas=(args.beta1_new, args.beta2_new), | |
eps=args.eps_new, | |
momentum=args.momentum_new, | |
optimizer_name=args.optimizer, | |
) | |
new_params_scheduler = cosine_lr( | |
new_params_optimizer, args.lr_new, args.warmup, total_steps | |
) | |
optimizer = { | |
"pretrained": pretrained_params_optimizer, | |
"new": new_params_optimizer, | |
} | |
scheduler = { | |
"pretrained": pretrained_params_scheduler, | |
"new": new_params_scheduler, | |
} | |
if args.horovod: | |
pretrained_params_optimizer = hvd.DistributedOptimizer( | |
pretrained_params_optimizer, | |
named_parameters=model.named_parameters(), | |
) | |
new_params_optimizer = hvd.DistributedOptimizer( | |
new_params_optimizer, named_parameters=model.named_parameters() | |
) | |
hvd.broadcast_parameters(model.state_dict(), root_rank=0) | |
hvd.broadcast_optimizer_state(pretrained_params_optimizer, root_rank=0) | |
hvd.broadcast_optimizer_state(new_params_optimizer, root_rank=0) | |
else: | |
optimizer = get_optimizer( | |
[ | |
{"params": gain_or_bias_params, "weight_decay": 0.0}, | |
{"params": rest_params, "weight_decay": args.wd}, | |
], | |
lr=args.lr, | |
betas=(args.beta1, args.beta2), | |
eps=args.eps, | |
momentum=args.momentum, | |
optimizer_name=args.optimizer, | |
) | |
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps) | |
if args.horovod: | |
optimizer = hvd.DistributedOptimizer( | |
optimizer, named_parameters=model.named_parameters() | |
) | |
hvd.broadcast_parameters(model.state_dict(), root_rank=0) | |
hvd.broadcast_optimizer_state(optimizer, root_rank=0) | |
scaler = GradScaler() if args.precision == "amp" else None | |
# optionally resume from a checkpoint | |
start_epoch = 0 | |
if args.resume is not None: | |
if os.path.isfile(args.resume): | |
checkpoint = torch.load(args.resume, map_location=device) | |
if "epoch" in checkpoint: | |
# resuming a train checkpoint w/ epoch and optimizer state | |
start_epoch = checkpoint["epoch"] | |
sd = checkpoint["state_dict"] | |
if not args.distributed and next(iter(sd.items()))[0].startswith( | |
"module" | |
): | |
sd = {k[len("module.") :]: v for k, v in sd.items()} | |
model.load_state_dict(sd) | |
if args.split_opt: | |
if optimizer is not None: | |
for k, o_ in optimizer.items(): | |
o_.load_state_dict(checkpoint[k + "_" + "optimizer"]) | |
if optimizer is not None: | |
optimizer.load_state_dict(checkpoint["optimizer"]) | |
if scaler is not None and "scaler" in checkpoint: | |
scaler.load_state_dict(checkpoint["scaler"]) | |
logging.info( | |
f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})" | |
) | |
else: | |
# loading a bare (model only) checkpoint for fine-tune or evaluation | |
model.load_state_dict(checkpoint) | |
logging.info( | |
f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})" | |
) | |
if args.freeze_text: | |
print("Freeze Text!!!!") | |
for k in text_freeze_parameters: | |
k.requires_grad = False | |
else: | |
logging.info("=> no checkpoint found at '{}'".format(args.resume)) | |
cudnn.benchmark = True | |
cudnn.deterministic = False | |
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0 | |
args.save_logs = args.logs and args.logs.lower() != "none" and is_master(args) | |
writer = None | |
if args.save_logs and args.tensorboard: | |
assert tensorboard is not None, "Please install tensorboard." | |
writer = tensorboard.SummaryWriter(args.tensorboard_path) | |
if args.wandb and is_master(args): | |
assert wandb is not None, "Please install wandb." | |
logging.debug("Starting wandb.") | |
args.train_sz = data["train"].dataloader.num_samples | |
if args.val_data is not None: | |
args.val_sz = data["val"].dataloader.num_samples | |
# you will have to configure this for your project! | |
wandb.init( | |
project="clap", | |
notes=args.wandb_notes, | |
name=args.wandb_notes, | |
tags=[], | |
config=vars(args), | |
) | |
if args.debug: | |
wandb.watch(model, log="all") | |
wandb.save(params_file) | |
logging.debug("Finished loading wandb.") | |
if "train" not in data: | |
evaluate(model, data, start_epoch, args, writer) | |
return | |
elif start_epoch == 0 and "val" in data and not args.no_eval: | |
evaluate(model, data, 0, args, writer) | |
# print(f'rank {args.rank}, Start First Evaluation')# (yusong): for debug | |
if args.save_top_performance: | |
current_top_k_ckpt_metrics = { | |
i: 0 for i in range(args.save_top_performance) | |
} # initialize the top-k metric for ckpts to 0 | |
# print(f'rank {args.rank}, Start Training') # (yusong): for debug | |
for epoch in range(start_epoch, args.epochs): | |
# freeze the text param after (include) args.freeze_text_after, this is -1 by default | |
if epoch == args.freeze_text_after: | |
print("Text pretrained parameters are freezed since this epoch.") | |
for k in text_freeze_parameters: | |
k.requires_grad = False | |
if is_master(args): | |
logging.info(f"Start epoch {epoch}") | |
train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer) | |
completed_epoch = epoch + 1 | |
if ( | |
any(v in data for v in ("val", "imagenet-val", "imagenet-v2")) | |
and not args.no_eval | |
): | |
metrics = evaluate(model, data, completed_epoch, args, writer) | |
if args.save_top_performance: | |
top_k_dataset = args.top_k_checkpoint_select_dataset | |
top_k_metric = args.top_k_checkpoint_select_metric | |
filtered_metrics = [ | |
v | |
for k, v in metrics.items() | |
if top_k_metric in k and top_k_dataset in k | |
] # check all R@10 metrics (all dataset) and use it to update the ckpt | |
# Saving checkpoints. | |
if args.save_logs: | |
if args.split_opt: | |
opt_dict = { | |
k + "_" + "optimizer": v.state_dict() for k, v in optimizer.items() | |
} | |
else: | |
opt_dict = {"optimizer": optimizer.state_dict()} | |
checkpoint_dict = { | |
"epoch": completed_epoch, | |
"name": args.name, | |
"state_dict": model.state_dict(), | |
} | |
checkpoint_dict.update(opt_dict) | |
if scaler is not None: | |
checkpoint_dict["scaler"] = scaler.state_dict() | |
if completed_epoch == args.epochs or ( | |
args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0 | |
): | |
torch.save( | |
checkpoint_dict, | |
os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"), | |
) | |
if args.save_most_recent: | |
torch.save( | |
checkpoint_dict, | |
os.path.join(args.checkpoint_path, f"epoch_latest.pt"), | |
) | |
if args.save_top_performance and not args.no_eval: | |
update_top_k_performance( | |
filtered_metrics, | |
current_top_k_ckpt_metrics, | |
args, | |
checkpoint_dict, | |
bignumbetter=True, | |
) | |
if args.wandb and is_master(args): | |
wandb.finish() | |
def copy_codebase(args): | |
from shutil import copytree, ignore_patterns | |
new_code_path = os.path.join(args.logs, args.name, "code") | |
if os.path.exists(new_code_path): | |
print( | |
f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment." | |
) | |
return -1 | |
print(f"Copying codebase to {new_code_path}") | |
current_code_path = os.path.realpath(__file__) | |
for _ in range(3): | |
current_code_path = os.path.dirname(current_code_path) | |
copytree( | |
current_code_path, new_code_path, ignore=ignore_patterns("log", "logs", "wandb") | |
) | |
print("Done copying code.") | |
return 1 | |
if __name__ == "__main__": | |
main() | |