George870's picture
This Pull Request fixes the space by using a reacheable model (#1)
fd38f82 verified
raw
history blame
19.3 kB
# Will be fixed soon, but meanwhile:
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
import gradio as gr
import random
import torch
import os
from torch import inference_mode
from typing import Optional, List
import numpy as np
from models import load_model
import utils
import spaces
import huggingface_hub
from inversion_utils import inversion_forward_process, inversion_reverse_process
LDM2 = "cvssp/audioldm2"
MUSIC = "cvssp/audioldm2-music"
LDM2_LARGE = "cvssp/audioldm2-large"
STABLEAUD = "chaowenguo/stable-audio-open-1.0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ldm2 = load_model(model_id=LDM2, device=device)
ldm2_large = load_model(model_id=LDM2_LARGE, device=device)
ldm2_music = load_model(model_id=MUSIC, device=device)
ldm_stableaud = load_model(model_id=STABLEAUD, device=device, token=os.getenv('PRIV_TOKEN'))
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src, duration, save_compute):
# ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)
with inference_mode():
w0 = ldm_stable.vae_encode(x0)
# find Zs and wts - forward process
_, zs, wts, extra_info = inversion_forward_process(ldm_stable, w0, etas=1,
prompts=[prompt_src],
cfg_scales=[cfg_scale_src],
num_inference_steps=num_diffusion_steps,
numerical_fix=True,
duration=duration,
save_compute=save_compute)
return zs, wts, extra_info
def sample(ldm_stable, zs, wts, extra_info, prompt_tar, tstart, cfg_scale_tar, duration, save_compute):
# reverse process (via Zs and wT)
tstart = torch.tensor(tstart, dtype=torch.int)
w0, _ = inversion_reverse_process(ldm_stable, xT=wts, tstart=tstart,
etas=1., prompts=[prompt_tar],
neg_prompts=[""], cfg_scales=[cfg_scale_tar],
zs=zs[:int(tstart)],
duration=duration,
extra_info=extra_info,
save_compute=save_compute)
# vae decode image
with inference_mode():
x0_dec = ldm_stable.vae_decode(w0)
if 'stable-audio' not in ldm_stable.model_id:
if x0_dec.dim() < 4:
x0_dec = x0_dec[None, :, :, :]
with torch.no_grad():
audio = ldm_stable.decode_to_mel(x0_dec)
else:
audio = x0_dec.squeeze(0).T
return (ldm_stable.get_sr(), audio.squeeze().cpu().numpy())
def get_duration(input_audio,
model_id: str,
do_inversion: bool,
wts: Optional[torch.Tensor], zs: Optional[torch.Tensor], extra_info: Optional[List],
saved_inv_model: str,
source_prompt: str = "",
target_prompt: str = "",
steps: int = 200,
cfg_scale_src: float = 3.5,
cfg_scale_tar: float = 12,
t_start: int = 45,
randomize_seed: bool = True,
save_compute: bool = True,
oauth_token: Optional[gr.OAuthToken] = None):
if model_id == LDM2:
factor = 1
elif model_id == LDM2_LARGE:
factor = 2.5
elif model_id == STABLEAUD:
factor = 3.2
else: # MUSIC
factor = 1
forwards = 0
if do_inversion or randomize_seed:
forwards = steps if source_prompt == "" else steps * 2 # x2 when there is a prompt text
forwards += int(t_start / 100 * steps) * 2
duration = min(utils.get_duration(input_audio), utils.MAX_DURATION)
time_for_maxlength = factor * forwards * 0.15 # 0.25 is the time per forward pass
if model_id != STABLEAUD:
time_for_maxlength = time_for_maxlength / utils.MAX_DURATION * duration
print('expected time:', time_for_maxlength)
spare_time = 5
return max(10, time_for_maxlength + spare_time)
def verify_model_params(model_id: str, input_audio, src_prompt: str, tar_prompt: str, cfg_scale_src: float,
oauth_token: gr.OAuthToken | None):
if input_audio is None:
raise gr.Error('Input audio missing!')
if tar_prompt == "":
raise gr.Error("Please provide a target prompt to edit the audio.")
if src_prompt != "":
if model_id == STABLEAUD and cfg_scale_src != 1:
gr.Info("Consider using Source Guidance Scale=1 for Stable Audio Open 1.0.")
elif model_id != STABLEAUD and cfg_scale_src != 3:
gr.Info(f"Consider using Source Guidance Scale=3 for {model_id}.")
if model_id == STABLEAUD:
if oauth_token is None:
raise gr.Error("You must be logged in to use Stable Audio Open 1.0. Please log in and try again.")
try:
huggingface_hub.get_hf_file_metadata(huggingface_hub.hf_hub_url(STABLEAUD, 'transformer/config.json'),
token=oauth_token.token)
print('Has Access')
# except huggingface_hub.utils._errors.GatedRepoError:
except huggingface_hub.errors.GatedRepoError:
raise gr.Error("You need to accept the license agreement to use Stable Audio Open 1.0. "
"Visit the <a href='https://huggingface.co/stabilityai/stable-audio-open-1.0'>"
"model page</a> to get access.")
@spaces.GPU(duration=get_duration)
def edit(input_audio,
model_id: str,
do_inversion: bool,
wts: Optional[torch.Tensor], zs: Optional[torch.Tensor], extra_info: Optional[List],
saved_inv_model: str,
source_prompt: str = "",
target_prompt: str = "",
steps: int = 200,
cfg_scale_src: float = 3.5,
cfg_scale_tar: float = 12,
t_start: int = 45,
randomize_seed: bool = True,
save_compute: bool = True,
oauth_token: Optional[gr.OAuthToken] = None):
print(model_id)
if model_id == LDM2:
ldm_stable = ldm2
elif model_id == LDM2_LARGE:
ldm_stable = ldm2_large
elif model_id == STABLEAUD:
ldm_stable = ldm_stableaud
else: # MUSIC
ldm_stable = ldm2_music
ldm_stable.model.scheduler.set_timesteps(steps, device=device)
# If the inversion was done for a different model, we need to re-run the inversion
if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id):
do_inversion = True
if input_audio is None:
raise gr.Error('Input audio missing!')
x0, _, duration = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device,
stft=('stable-audio' not in ldm_stable.model_id), model_sr=ldm_stable.get_sr())
if wts is None or zs is None:
do_inversion = True
if do_inversion or randomize_seed: # always re-run inversion
zs_tensor, wts_tensor, extra_info_list = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt,
num_diffusion_steps=steps,
cfg_scale_src=cfg_scale_src,
duration=duration,
save_compute=save_compute)
wts = wts_tensor
zs = zs_tensor
extra_info = extra_info_list
saved_inv_model = model_id
do_inversion = False
else:
wts_tensor = wts.to(device)
zs_tensor = zs.to(device)
extra_info_list = [e.to(device) for e in extra_info if e is not None]
output = sample(ldm_stable, zs_tensor, wts_tensor, extra_info_list, prompt_tar=target_prompt,
tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar, duration=duration,
save_compute=save_compute)
return output, wts.cpu(), zs.cpu(), [e.cpu() for e in extra_info if e is not None], saved_inv_model, do_inversion
# return output, wtszs_file, saved_inv_model, do_inversion
def get_example():
case = [
['Examples/Beethoven.mp3',
'',
'A recording of an arcade game soundtrack.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_arcade.mp3',
],
['Examples/Beethoven.mp3',
'A high quality recording of wind instruments and strings playing.',
'A high quality recording of a piano playing.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_piano.mp3',
],
['Examples/Beethoven.mp3',
'',
'Heavy Rock.',
40,
'stabilityai/stable-audio-open-1.0',
'27s',
'Examples/Beethoven_rock.mp3',
],
['Examples/ModalJazz.mp3',
'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.',
'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.',
45,
'cvssp/audioldm2-music',
'106s',
'Examples/ModalJazz_banjo.mp3',],
['Examples/Shadows.mp3',
'',
'8-bit arcade game soundtrack.',
40,
'stabilityai/stable-audio-open-1.0',
'34s',
'Examples/Shadows_arcade.mp3',],
['Examples/Cat.mp3',
'',
'A dog barking.',
75,
'cvssp/audioldm2-large',
'10s',
'Examples/Cat_dog.mp3',]
]
return case
intro = """
<h1 style="font-weight: 1000; text-align: center; margin: 0px;"> ZETA Editing 🎧 </h1>
<h2 style="font-weight: 1000; text-align: center; margin: 0px;">
Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2>
<h3 style="margin-top: 0px; margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2402.10009">[Paper]</a>&nbsp;|&nbsp;
<a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a>&nbsp;|&nbsp;
<a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a>
</h3>
<p style="font-size: 1rem; line-height: 1.2em;">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" >
</a>
</p>
<p style="margin: 0px;">
<b>NEW - 15.10.24:</b> You can now edit using <b>Stable Audio Open 1.0</b>.
You must be <b>logged in</b> after accepting the
<b><a href="https://huggingface.co/stabilityai/stable-audio-open-1.0">license agreement</a></b> to use it.</br>
</p>
<ul style="padding-left:40px; line-height:normal;">
<li style="margin: 0px;">Prompts behave differently - e.g.,
try "8-bit arcade" directly instead of "a recording of...". Check out the new examples below!</li>
<li style="margin: 0px;">Try to play around <code>T-start=40%</code>.</li>
<li style="margin: 0px;">Under "More Options": Use <code>Source Guidance Scale=1</code>,
and you can try fewer timesteps (even 20!).</li>
<li style="margin: 0px;">Stable Audio Open is a general-audio model.
For better music editing, duplicate the space and change to a
<a href="https://huggingface.co/models?other=base_model:finetune:stabilityai/stable-audio-open-1.0">
fine-tuned model for music</a>.</li>
</ul>
<p>
<b>NEW - 15.10.24:</b> Parallel editing is enabled by default.
To disable, uncheck <code>Efficient editing</code> under "More Options".
Saves a bit of time.
</p>
"""
help = """
<div style="font-size:medium">
<b>Instructions:</b><br>
<ul style="line-height: normal">
<li>You must provide an input audio and a target prompt to edit the audio. </li>
<li>T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance.
Lower value -> favor fidelity. Higher value -> apply a stronger edit.</li>
<li>Make sure that you use a model version that is suitable for your input audio.
For example, use AudioLDM2-music for music while AudioLDM2-large for general audio.
</li>
<li>You can additionally provide a source prompt to guide even further the editing process.</li>
<li>Longer input will take more time.</li>
<li><strong>Unlimited length</strong>: This space automatically trims input audio to a maximum length of 30 seconds.
For unlimited length, duplicated the space, and change the
<code style="display:inline; background-color: lightgrey;">MAX_DURATION</code> parameter
inside <code style="display:inline; background-color: lightgrey;">utils.py</code>
to <code style="display:inline; background-color: lightgrey;">None</code>.
</li>
</ul>
</div>
"""
css = '.gradio-container {max-width: 1000px !important; padding-top: 1.5rem !important;}' \
'.audio-upload .wrap {min-height: 0px;}'
# with gr.Blocks(css='style.css') as demo:
with gr.Blocks(css=css) as demo:
def reset_do_inversion(do_inversion_user, do_inversion):
# do_inversion = gr.State(value=True)
do_inversion = True
do_inversion_user = True
return do_inversion_user, do_inversion
# handle the case where the user clicked the button but the inversion was not done
def clear_do_inversion_user(do_inversion_user):
do_inversion_user = False
return do_inversion_user
def post_match_do_inversion(do_inversion_user, do_inversion):
if do_inversion_user:
do_inversion = True
do_inversion_user = False
return do_inversion_user, do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
extra_info = gr.State()
saved_inv_model = gr.State()
do_inversion = gr.State(value=True) # To save some runtime when editing the same thing over and over
do_inversion_user = gr.State(value=False)
with gr.Group():
gr.Markdown("💡 **note**: input longer than **30 sec** is automatically trimmed "
"(for unlimited input, see the Help section below)")
with gr.Row(equal_height=True):
input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath",
editable=True, label="Input Audio", interactive=True, scale=1, format='wav',
elem_classes=['audio-upload'])
output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1, format='wav')
with gr.Row():
tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output",
placeholder="a recording of a happy upbeat arcade game soundtrack",
lines=2, interactive=True)
with gr.Row():
t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3,
info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.")
model_id = gr.Dropdown(label="Model Version",
choices=[LDM2,
LDM2_LARGE,
MUSIC,
STABLEAUD],
info="Choose a checkpoint suitable for your audio and edit",
value="cvssp/audioldm2-music", interactive=True, type="value", scale=2)
with gr.Row():
submit = gr.Button("Edit", variant="primary", scale=3)
gr.LoginButton(value="Login to HF (For Stable Audio)", scale=1)
with gr.Accordion("More Options", open=False):
with gr.Row():
src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True,
info="Optional: Describe the original audio input",
placeholder="A recording of a happy upbeat classical music piece",)
with gr.Row(equal_height=True):
cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None,
label="Source Guidance Scale", interactive=True, scale=1)
cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None,
label="Target Guidance Scale", interactive=True, scale=1)
steps = gr.Number(value=50, step=1, minimum=10, maximum=300,
info="Higher values (e.g. 200) yield higher-quality generation.",
label="Num Diffusion Steps", interactive=True, scale=2)
with gr.Row(equal_height=True):
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
save_compute = gr.Checkbox(label='Efficient editing', value=True)
length = gr.Number(label="Length", interactive=False, visible=False)
with gr.Accordion("Help💡", open=False):
gr.HTML(help)
submit.click(
fn=verify_model_params,
inputs=[model_id, input_audio, src_prompt, tar_prompt, cfg_scale_src],
outputs=[]
).success(
fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=[seed], queue=False
).then(
fn=clear_do_inversion_user, inputs=[do_inversion_user], outputs=[do_inversion_user]
).then(
fn=edit,
inputs=[input_audio,
model_id,
do_inversion,
wts, zs, extra_info,
saved_inv_model,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
t_start,
randomize_seed,
save_compute,
],
outputs=[output_audio, wts, zs, extra_info, saved_inv_model, do_inversion]
).success(
fn=post_match_do_inversion,
inputs=[do_inversion_user, do_inversion],
outputs=[do_inversion_user, do_inversion]
)
# If sources changed we have to rerun inversion
gr.on(
triggers=[input_audio.change, src_prompt.change, model_id.change, cfg_scale_src.change,
steps.change, save_compute.change],
fn=reset_do_inversion,
inputs=[do_inversion_user, do_inversion],
outputs=[do_inversion_user, do_inversion]
)
gr.Examples(
label="Examples",
examples=get_example(),
inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio],
outputs=[output_audio]
)
demo.queue()
demo.launch(state_session_capacity=15)