GeorgiosIoannouCoder's picture
Create app.py
0b00252 verified
#############################################################################################################################
# Filename : app.py
# Description: A Streamlit application to showcase how RAG works.
# Author : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.
import os
import streamlit as st
from dotenv import load_dotenv, find_dotenv
from huggingface_hub import InferenceClient
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from pymongo.collection import Collection
from typing import Dict, Any
#############################################################################################################################
class RAGQuestionAnswering:
def __init__(self):
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the RAG Question Answering system by setting up configuration
and loading environment variables.
Assumptions
-----------
- Expects .env file with MONGO_URI and HF_TOKEN
- Requires proper MongoDB setup with vector search index
- Needs connection to Hugging Face API
Notes
-----
This is the main class that handles all RAG operations
"""
self.load_environment()
self.setup_mongodb()
self.setup_embedding_model()
self.setup_vector_search()
self.setup_rag_chain()
def load_environment(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Loads environment variables from .env file and sets up configuration constants.
Assumptions
-----------
Expects a .env file with MONGO_URI and HF_TOKEN defined
Notes
-----
Will stop the application if required environment variables are missing
"""
load_dotenv(find_dotenv())
self.MONGO_URI = os.getenv("MONGO_URI")
self.HF_TOKEN = os.getenv("HF_TOKEN")
if not self.MONGO_URI or not self.HF_TOKEN:
st.error("Please ensure MONGO_URI and HF_TOKEN are set in your .env file")
st.stop()
# MongoDB configuration.
self.DB_NAME = "txts"
self.COLLECTION_NAME = "txts_collection"
self.VECTOR_SEARCH_INDEX = "vector_index"
def setup_mongodb(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the MongoDB connection and sets up the collection.
Assumptions
-----------
- Valid MongoDB URI is available
- Database and collection exist in MongoDB Atlas
Notes
-----
Uses st.cache_resource for efficient connection management
"""
@st.cache_resource
def init_mongodb() -> Collection:
cluster = MongoClient(self.MONGO_URI)
return cluster[self.DB_NAME][self.COLLECTION_NAME]
self.mongodb_collection = init_mongodb()
def setup_embedding_model(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the embedding model for vector search.
Assumptions
-----------
- Valid Hugging Face API token
- Internet connection to access the model
Notes
-----
Uses the all-mpnet-base-v2 model from sentence-transformers
"""
@st.cache_resource
def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
return HuggingFaceInferenceAPIEmbeddings(
api_key=self.HF_TOKEN,
model_name="sentence-transformers/all-mpnet-base-v2",
)
self.embedding_model = init_embedding_model()
def setup_vector_search(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the vector search functionality using MongoDB Atlas.
Assumptions
-----------
- MongoDB Atlas vector search index is properly configured
- Valid embedding model is initialized
Notes
-----
Creates a retriever with similarity search and score threshold
"""
@st.cache_resource
def init_vector_search() -> MongoDBAtlasVectorSearch:
return MongoDBAtlasVectorSearch.from_connection_string(
connection_string=self.MONGO_URI,
namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
embedding=self.embedding_model,
index_name=self.VECTOR_SEARCH_INDEX,
)
self.vector_search = init_vector_search()
self.retriever = self.vector_search.as_retriever(
search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
)
def format_docs(self, docs: list[Document]) -> str:
"""
Parameters
----------
**docs:** list[Document] - List of documents to be formatted
Output
------
str: Formatted string containing concatenated document content
Purpose
-------
Formats the retrieved documents into a single string for processing
Assumptions
-----------
Documents have page_content attribute
Notes
-----
Joins documents with double newlines for better readability
"""
return "\n\n".join(doc.page_content for doc in docs)
def generate_response(self, input_dict: Dict[str, Any]) -> str:
"""
Parameters
----------
**input_dict:** Dict[str, Any] - Dictionary containing context and question
Output
------
str: Generated response from the model
Purpose
-------
Generates a response using the Hugging Face model based on context and question
Assumptions
-----------
- Valid Hugging Face API token
- Input dictionary contains 'context' and 'question' keys
Notes
-----
Uses Qwen2.5-1.5B-Instruct model with controlled temperature
"""
hf_client = InferenceClient(api_key=self.HF_TOKEN)
formatted_prompt = self.prompt.format(**input_dict)
response = hf_client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
messages=[
{"role": "system", "content": formatted_prompt},
{"role": "user", "content": input_dict["question"]},
],
max_tokens=1000,
temperature=0.2,
)
return response.choices[0].message.content
def setup_rag_chain(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the RAG chain for processing questions and generating answers
Assumptions
-----------
Retriever and response generator are properly initialized
Notes
-----
Creates a chain that combines retrieval and response generation
"""
self.prompt = PromptTemplate.from_template(
"""Use the following pieces of context to answer the question at the end.
START OF CONTEXT:
{context}
END OF CONTEXT:
START OF QUESTION:
{question}
END OF QUESTION:
If you do not know the answer, just say that you do not know.
NEVER assume things.
"""
)
self.rag_chain = {
"context": self.retriever | RunnableLambda(self.format_docs),
"question": RunnablePassthrough(),
} | RunnableLambda(self.generate_response)
def process_question(self, question: str) -> str:
"""
Parameters
----------
**question:** str - The user's question to be answered
Output
------
str: The generated answer to the question
Purpose
-------
Processes a user question through the RAG chain and returns an answer
Assumptions
-----------
- Question is a non-empty string
- RAG chain is properly initialized
Notes
-----
Main interface for question-answering functionality
"""
return self.rag_chain.invoke(question)
#############################################################################################################################
def setup_streamlit_ui() -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the Streamlit user interface with proper styling and layout
Assumptions
-----------
- CSS file exists at ./static/styles/style.css
- Image file exists at ./static/images/ctp.png
Notes
-----
Handles all UI-related setup and styling
"""
st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")
# Load CSS.
with open("./static/styles/style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# Title and subtitles.
st.markdown(
'<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
unsafe_allow_html=True,
)
st.markdown(
'<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Zoom Closed Captioning From The Lectures</h3>',
unsafe_allow_html=True,
)
st.markdown(
'<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">CUNY Tech Prep Tutorial 5</h2>',
unsafe_allow_html=True,
)
# Display logo.
left_co, cent_co, last_co = st.columns(3)
with cent_co:
st.image("./static/images/ctp.png")
#############################################################################################################################
def main():
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Main function that runs the Streamlit application
Assumptions
-----------
All required environment variables and files are present
Notes
-----
Entry point for the application
"""
# Setup UI.
setup_streamlit_ui()
# Initialize RAG system.
rag_system = RAGQuestionAnswering()
# Create input elements.
query = st.text_input("Question:", key="question_input")
# Handle submission.
if st.button("Submit", type="primary"):
if query:
with st.spinner("Generating response..."):
response = rag_system.process_question(query)
st.text_area("Answer:", value=response, height=200, disabled=True)
else:
st.warning("Please enter a question.")
# Add GitHub link.
st.markdown(
"""
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
<b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;">GitHub repository</a></b>
</p>
""",
unsafe_allow_html=True,
)
#############################################################################################################################
if __name__ == "__main__":
main()