File size: 13,531 Bytes
7284b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#############################################################################################################################
# Filename   : app.py
# Description: A Streamlit application to showcase the importance of Responsible AI in LLMs.
# Author     : Georgios Ioannou
#
# TODO: Add code for Google Gemma 7b and 7b-it.
# TODO: Write code documentation.
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.

import os  # Load environment variable(s).
import requests  # Send HTTP GET request to Hugging Face models for inference.
import streamlit as st  # Build the GUI of the application.
import streamlit.components.v1 as components

from dataclasses import dataclass
from dotenv import find_dotenv, load_dotenv  # Read local .env file.
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationChain
from langchain.llms import OpenAI
from policies import complex_policy, simple_policy
from transformers import pipeline  # Access to Hugging Face models.
from typing import Literal


#############################################################################################################################
# Load environment variable(s).

# HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


#############################################################################################################################


@dataclass
class Message:
    """Class for keeping track of a chat message."""

    origin: Literal["human", "ai"]
    message: str


#############################################################################################################################
# Remeber (Keep history) user's message in each rendering of the application.


def initialize_session_state():
    if "history" not in st.session_state:
        st.session_state.history = []
    if "token_count" not in st.session_state:
        st.session_state.token_count = 0
    if "policy" not in st.session_state:
        st.session_state.policy = "No Policy"
    if "is_gemma_model" not in st.session_state:
        st.session_state.is_gemma_model = False
    if "selected_ai_icon" not in st.session_state:
        st.session_state.selected_ai_icon = "a1.png"
    if "selected_user_icon" not in st.session_state:
        st.session_state.selected_user_icon = "man.png"


#############################################################################################################################


def on_click_callback():
    with get_openai_callback() as cb:
        human_prompt = st.session_state.human_prompt

        # Policy + User Query Text.

        role = "User"  # This can be an Agent.

        task = f"""
        Task: Check if there is unsafe content in
        '{role}' messages in conversations
        according our safety policy with the below categories.
        """

        output_format = f"""
        Provide your safety assessment for '{role}' in the above conversation:
        - First line must read 'safe' or 'unsafe'.
        - If unsafe, a second line must include a comma-separated list of violated categories.
        """

        query = human_prompt

        conversation = f"""
        <BEGIN CONVERSATION>
        User: {query}
        <END CONVERSATION>
        """

        if st.session_state.policy == "Simple Policy":
            prompt = f"""
            {task}
            {simple_policy}
            {conversation}
            {output_format}
            """
        elif st.session_state.policy == "Complex Policy":
            prompt = f"""
            {task}
            {complex_policy}
            {conversation}
            {output_format}
            """
        elif st.session_state.policy == "No Policy":
            prompt = human_prompt

        # Getting the llm response for safety check 1.
        # "https://api-inference.huggingface.co/models/meta-llama/LlamaGuard-7b"
        if st.session_state.is_gemma_model:
            pass
        else:
            llm_response_safety_check_1 = st.session_state.conversation.run(prompt)
            st.session_state.history.append(Message("human", human_prompt))
            st.session_state.token_count += cb.total_tokens

        # Checking if response is safe. Safety Check 1. Checking what goes in (user input).
        if (
            "unsafe" in llm_response_safety_check_1.lower()
        ):  # If respone is unsafe return unsafe.
            st.session_state.history.append(Message("ai", llm_response_safety_check_1))
            return
        else:  # If respone is safe answer the question.
            if st.session_state.is_gemma_model:
                pass
            else:
                conversation_chain = ConversationChain(
                    llm=OpenAI(
                        temperature=0.2,
                        openai_api_key=OPENAI_API_KEY,
                        model_name=st.session_state.model,
                    ),
                )
                llm_response = conversation_chain.run(human_prompt)
                # st.session_state.history.append(Message("ai", llm_response))
                st.session_state.token_count += cb.total_tokens

        # Policy + LLM Response.
        query = llm_response

        conversation = f"""
        <BEGIN CONVERSATION>
        User: {query}
        <END CONVERSATION>
        """

        if st.session_state.policy == "Simple Policy":
            prompt = f"""
            {task}
            {simple_policy}
            {conversation}
            {output_format}
            """
        elif st.session_state.policy == "Complex Policy":
            prompt = f"""
            {task}
            {complex_policy}
            {conversation}
            {output_format}
            """
        elif st.session_state.policy == "No Policy":
            prompt = llm_response

        # Getting the llm response for safety check 2.
        # "https://api-inference.huggingface.co/models/meta-llama/LlamaGuard-7b"
        if st.session_state.is_gemma_model:
            pass
        else:
            llm_response_safety_check_2 = st.session_state.conversation.run(prompt)
            st.session_state.token_count += cb.total_tokens

        # Checking if response is safe. Safety Check 2. Checking what goes out (llm output).
        if (
            "unsafe" in llm_response_safety_check_2.lower()
        ):  # If respone is unsafe return.
            st.session_state.history.append(
                Message(
                    "ai",
                    "THIS FROM THE AUTHOR OF THE CODE: LLM WANTED TO RESPOND UNSAFELY!",
                )
            )
        else:
            st.session_state.history.append(Message("ai", llm_response))


#############################################################################################################################
# Function to apply local CSS.


def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)


#############################################################################################################################


# Main function to create the Streamlit web application.


def main():
    # try:
    initialize_session_state()

    # Page title and favicon.
    st.set_page_config(page_title="Responsible AI", page_icon="⚖️")

    # Load CSS.
    local_css("./static/styles/styles.css")

    # Title.
    title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
                Responsible AI</h1>"""
    st.markdown(title, unsafe_allow_html=True)

    # Subtitle 1.
    title = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
                Showcase the importance of Responsible AI in LLMs</h3>"""
    st.markdown(title, unsafe_allow_html=True)

    # Subtitle 2.
    title = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">
                CUNY Tech Prep Tutorial 6</h2>"""
    st.markdown(title, unsafe_allow_html=True)

    # Image.
    image = "./static/ctp.png"
    left_co, cent_co, last_co = st.columns(3)
    with cent_co:
        st.image(image=image)

    # Sidebar dropdown menu for Models.
    models = [
        "gpt-4-turbo",
        "gpt-4",
        "gpt-3.5-turbo",
        "gpt-3.5-turbo-instruct",
        "gemma-7b",
        "gemma-7b-it",
    ]
    selected_model = st.sidebar.selectbox("Select Model:", models)
    st.sidebar.write(f"Current Model: {selected_model}")

    if selected_model == "gpt-4-turbo":
        st.session_state.model = "gpt-4-turbo"
    elif selected_model == "gpt-4":
        st.session_state.model = "gpt-4"
    elif selected_model == "gpt-3.5-turbo":
        st.session_state.model = "gpt-3.5-turbo"
    elif selected_model == "gpt-3.5-turbo-instruct":
        st.session_state.model = "gpt-3.5-turbo-instruct"
    elif selected_model == "gemma-7b":
        st.session_state.model = "gemma-7b"
    elif selected_model == "gemma-7b-it":
        st.session_state.model = "gemma-7b-it"

    if "gpt" in st.session_state.model:
        st.session_state.conversation = ConversationChain(
            llm=OpenAI(
                temperature=0.2,
                openai_api_key=OPENAI_API_KEY,
                model_name=st.session_state.model,
            ),
        )
    elif "gemma" in st.session_state.model:
        # Load model from Hugging Face.
        st.session_state.is_gemma_model = True
        pass

    # Sidebar dropdown menu for Policies.
    policies = ["No Policy", "Complex Policy", "Simple Policy"]
    selected_policy = st.sidebar.selectbox("Select Policy:", policies)
    st.sidebar.write(f"Current Policy: {selected_policy}")

    if selected_policy == "No Policy":
        st.session_state.policy = "No Policy"
    elif selected_policy == "Complex Policy":
        st.session_state.policy = "Complex Policy"
    elif selected_policy == "Simple Policy":
        st.session_state.policy = "Simple Policy"

    # Sidebar dropdown menu for AI Icons.
    ai_icons = ["AI 1", "AI 2"]
    selected_ai_icon = st.sidebar.selectbox("AI Icon:", ai_icons)
    st.sidebar.write(f"Current AI Icon: {selected_ai_icon}")

    if selected_ai_icon == "AI 1":
        st.session_state.selected_ai_icon = "ai1.png"
    elif selected_ai_icon == "AI 2":
        st.session_state.selected_ai_icon = "ai2.png"

    # Sidebar dropdown menu for User Icons.
    user_icons = ["Man", "Woman"]
    selected_user_icon = st.sidebar.selectbox("User Icon:", user_icons)
    st.sidebar.write(f"Current User Icon: {selected_user_icon}")

    if selected_user_icon == "Man":
        st.session_state.selected_user_icon = "man.png"
    elif selected_user_icon == "Woman":
        st.session_state.selected_user_icon = "woman.png"

    # Placeholder for the chat messages.
    chat_placeholder = st.container()
    # Placeholder for the user input.
    prompt_placeholder = st.form("chat-form")
    token_placeholder = st.empty()

    with chat_placeholder:
        for chat in st.session_state.history:
            div = f"""
    <div class="chat-row 
        {'' if chat.origin == 'ai' else 'row-reverse'}">
        <img class="chat-icon" src="app/static/{
            st.session_state.selected_ai_icon if chat.origin == 'ai' 
                        else st.session_state.selected_user_icon}"
            width=32 height=32>
        <div class="chat-bubble
        {'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
            &#8203;{chat.message}
        </div>
    </div>
            """
            st.markdown(div, unsafe_allow_html=True)

        for _ in range(3):
            st.markdown("")

    # User prompt.
    with prompt_placeholder:
        st.markdown("**Chat**")
        cols = st.columns((6, 1))

        # Large text input in the left column.
        cols[0].text_input(
            "Chat",
            placeholder="What is your question?",
            label_visibility="collapsed",
            key="human_prompt",
        )
        # Red button in the right column.
        cols[1].form_submit_button(
            "Submit",
            type="primary",
            on_click=on_click_callback,
        )

    token_placeholder.caption(
        f"""
Used {st.session_state.token_count} tokens \n
"""
    )

    # GitHub repository of author.

    st.markdown(
        f"""
            <p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;"><b> Check out our
            <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;"> GitHub repository</a></b>
            </p>
    """,
        unsafe_allow_html=True,
    )

    # Use the Enter key in the keyborad to click on the Submit button.
    components.html(
        """
<script>
const streamlitDoc = window.parent.document;

const buttons = Array.from(
    streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
    el => el.innerText === 'Submit'
);

streamlitDoc.addEventListener('keydown', function(e) {
    switch (e.key) {
        case 'Enter':
            submitButton.click();
            break;
    }
});
</script>
""",
        height=0,
        width=0,
    )


#############################################################################################################################


if __name__ == "__main__":
    main()