import torchaudio from audiocraft.models import AudioGen from audiocraft.data.audio import audio_write import argparse ​ model = AudioGen.get_pretrained('facebook/audiogen-medium') model.set_generation_params(duration=5) # generate [duration] seconds. ​ def generate_audio(descriptions): wav = model.generate(descriptions) # generates samples for all descriptions in array. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) print(f'Generated {idx}th sample.') ​ if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate audio based on descriptions.") parser.add_argument("descriptions", nargs='+', help="List of descriptions for audio generation") args = parser.parse_args() generate_audio(args.descriptions) python audiogen-demo.py "[audio you want to generate 1]" "[audio you want to generate 2]"