Rehman1603's picture
Update app.py
32c7179 verified
raw
history blame
3.12 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import os
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import re
import pdfplumber
# Set the API key with double quotes
os.environ['TOGETHER_API_KEY'] = "d88cb7414e4039a84d2ed63f1b47daaaa4230c4c53a422045d8a30a9a3bc87d8"
text = ""
max_pages = 16
with pdfplumber.open("/content/New Data Set.pdf") as pdf:
for i, page in enumerate(pdf.pages):
if i >= max_pages:
break
text += page.extract_text() + "\n"
def Bot(Questions):
chat_template = """
Based on the provided context: {text}
Please answer the following question: {Questions}
Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know".
"""
prompt = PromptTemplate(
input_variables=['text', 'Questions'],
template=chat_template
)
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=50)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
try:
response = Generated_chat.invoke({
"text": text,
"Questions": Questions
})
response_text = response['text']
response_text = response_text.replace("assistant", "")
# Post-processing to handle repeated words and ensure completeness
words = response_text.split()
seen = set()
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
response_text = ' '.join(filtered_words)
response_text = response_text.strip() # Ensuring no extra spaces at the ends
if not response_text.endswith('.'):
response_text += '.'
return response_text
except Exception as e:
return f"Error in generating response: {e}"
def ChatBot(Questions):
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
# Check if the input question is a greeting
question_lower = Questions.lower().strip()
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
return "Hello! How can I assist you with the document today?"
else:
response=Bot(Questions)
return response.translate(str.maketrans('', '', '\n'))
# text_embedding = model.encode(text, convert_to_tensor=True)
# statement_embedding = model.encode(statement, convert_to_tensor=True)
# # Compute the cosine similarity between the embeddings
# similarity = util.pytorch_cos_sim(text_embedding, statement_embedding)
# # Print the similarity score
# print(f"Cosine similarity: {similarity.item()}")
# # Define a threshold for considering the statement as related
# threshold = 0.7
# if similarity.item() > threshold:
# response=Bot(Questions)
# return response
# else:
# response="The statement is not related to the text."
# return response
iface = gr.Interface(fn=ChatBot, inputs="text", outputs="text", title="Chatbot")
iface.launch(debug=True)