File size: 21,500 Bytes
b14983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#!/usr/bin/env python
import os,sys,glob,torch,random
import numpy as np
import argparse
try:
    import pyrosetta
    pyrosetta.init()
    APPROX = False
except:
    print("WARNING: pyRosetta not found, will use an approximate SSE calculation")
    APPROX = True

def main():
    args=get_args()
    assert args.input_pdb or args.pdb_dir is not None, 'Need to provide either an input pdb (--input_pdb) or a path to pdbs (--pdb_dir)'
    assert not (args.input_pdb is not None and args.pdb_dir is not None), 'Need to provide either --input_pdb or --pdb_dir, not both'

    os.makedirs(args.out_dir, exist_ok=True)
    if args.pdb_dir is not None:
        pdbs=glob.glob(f'{args.pdb_dir}/*pdb')
    else:
        pdbs=[args.input_pdb]
    for pdb in pdbs:
        name=os.path.split(pdb)[1][:-4]
        secstruc_dict=extract_secstruc(pdb)
        xyz,_,_ = parse_pdb_torch(pdb)
        ss, idx = ss_to_tensor(secstruc_dict)
        block_adj = construct_block_adj_matrix(torch.FloatTensor(ss), torch.tensor(xyz)).float()
        ss_tens, mask = mask_ss(ss, idx, max_mask=0)
        ss_argmax = torch.argmax(ss_tens[:,:4], dim=1).float()
        torch.save(ss_argmax, os.path.join(args.out_dir, f'{name}_ss.pt'))
        torch.save(block_adj, os.path.join(args.out_dir, f'{name}_adj.pt'))

def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--pdb_dir",required=False, help="path to directory of pdbs. Either pass this or the path to a specific pdb (--input_pdb)", default=None)
    parser.add_argument("--input_pdb", required=False, help="path to input pdb. Either provide this of path to directory of pdbs (--pdb_dir)", default=None)
    parser.add_argument("--out_dir",dest="out_dir", required=True, help='need to specify an output path')
    args = parser.parse_args()
    return args


def extract_secstruc(fn):
    pdb=parse_pdb(fn)
    idx = pdb['idx']
    if APPROX:
        aa_sequence = pdb["seq"]
        secstruct = get_sse(pdb["xyz"][:,1])
    else:
        dssp = pyrosetta.rosetta.core.scoring.dssp
        pose = pyrosetta.io.pose_from_pdb(fn)
        dssp.Dssp(pose).insert_ss_into_pose(pose, True)
        aa_sequence = pose.sequence()
        secstruct = pose.secstruct()
    secstruc_dict = {'sequence':[i for i in aa_sequence],
                     'idx':[int(i) for i in idx],
                     'ss':[i for i in secstruct]}
    return secstruc_dict

def ss_to_tensor(ss):
    """
    Function to convert ss files to indexed tensors
    0 = Helix
    1 = Strand
    2 = Loop
    3 = Mask/unknown
    4 = idx for pdb
    """
    ss_conv = {'H':0,'E':1,'L':2}
    idx = np.array(ss['idx'])
    ss_int = np.array([int(ss_conv[i]) for i in ss['ss']])
    return ss_int, idx

def mask_ss(ss, idx, min_mask = 0, max_mask = 1.0):
    mask_prop = random.uniform(min_mask, max_mask)
    transitions = np.where(ss[:-1] - ss[1:] != 0)[0] #gets last index of each block of ss
    stuck_counter = 0
    while len(ss[ss == 3])/len(ss) < mask_prop or stuck_counter > 100:
        width = random.randint(1,9)
        start = random.choice(transitions)
        offset = random.randint(-8,1)
        try:

            ss[start+offset:start+offset+width] = 3
        except:
            stuck_counter += 1
            pass
    ss = torch.tensor(ss)
    ss = torch.nn.functional.one_hot(ss, num_classes=4)
    ss = torch.cat((ss, torch.tensor(idx)[...,None]), dim=-1)
#     mask = torch.where(torch.argmax(ss[:,:-1], dim=-1) == 3, False, True)
    mask=torch.tensor(np.where(np.argmax(ss[:,:-1].numpy(), axis=-1) == 3))
    return ss, mask

def generate_Cbeta(N,Ca,C):
    # recreate Cb given N,Ca,C
    b = Ca - N 
    c = C - Ca
    a = torch.cross(b, c, dim=-1)
    #Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
    # fd: below matches sidechain generator (=Rosetta params)
    Cb = -0.57910144*a + 0.5689693*b - 0.5441217*c + Ca

    return Cb

def get_pair_dist(a, b): 
    """calculate pair distances between two sets of points
    
    Parameters
    ----------
    a,b : pytorch tensors of shape [batch,nres,3]
          store Cartesian coordinates of two sets of atoms
    Returns
    -------
    dist : pytorch tensor of shape [batch,nres,nres]
           stores paitwise distances between atoms in a and b
    """

    dist = torch.cdist(a, b, p=2)
    return dist


def construct_block_adj_matrix( sstruct, xyz, cutoff=6, include_loops=False ):
    ''' 
    Given a sstruct specification and backbone coordinates, build a block adjacency matrix.

    Input:
    
        sstruct (torch.FloatTensor): (L) length tensor with numeric encoding of sstruct at each position

        xyz (torch.FloatTensor): (L,3,3) tensor of Cartesian coordinates of backbone N,Ca,C atoms

        cutoff (float): The Cb distance cutoff under which residue pairs are considered adjacent
                        By eye, Nate thinks 6A is a good Cb distance cutoff

    Output:

        block_adj (torch.FloatTensor): (L,L) boolean matrix where adjacent secondary structure contacts are 1
    '''

    L = xyz.shape[0]
    
    # three anchor atoms
    N  = xyz[:,0]
    Ca = xyz[:,1]
    C  = xyz[:,2]
    
    # recreate Cb given N,Ca,C
    Cb = generate_Cbeta(N,Ca,C)
    
    # May need a batch dimension - NRB
    dist = get_pair_dist(Cb,Cb) # [L,L]
    dist[torch.isnan(dist)] = 999.9

    dist += 999.9*torch.eye(L,device=xyz.device)
    # Now we have dist matrix and sstruct specification, turn this into a block adjacency matrix
    # There is probably a way to do this in closed-form with a beautiful einsum but I am going to do the loop approach
    
    # First: Construct a list of segments and the index at which they begin and end
    in_segment = True
    segments = []

    begin = -1
    end = -1

    for i in range(sstruct.shape[0]):
        # Starting edge case
        if i == 0:
            begin = 0 
            continue

        if not sstruct[i] == sstruct[i-1]:
            end = i 
            segments.append( (sstruct[i-1], begin, end) )

            begin = i

    # Ending edge case: last segment is length one
    if not end == sstruct.shape[0]:
        segments.append( (sstruct[-1], begin, sstruct.shape[0]) )


    block_adj = torch.zeros_like(dist)
    for i in range(len(segments)):
        curr_segment = segments[i]

        if curr_segment[0] == 2 and not include_loops: continue

        begin_i = curr_segment[1]
        end_i = curr_segment[2]
        for j in range(i+1, len(segments)):
            j_segment = segments[j]

            if j_segment[0] == 2 and not include_loops: continue

            begin_j = j_segment[1]
            end_j = j_segment[2]

            if torch.any( dist[begin_i:end_i, begin_j:end_j] < cutoff ):
                # Matrix is symmetic
                block_adj[begin_i:end_i, begin_j:end_j] = torch.ones(end_i - begin_i, end_j - begin_j)
                block_adj[begin_j:end_j, begin_i:end_i] = torch.ones(end_j - begin_j, end_i - begin_i)
    return block_adj

def parse_pdb_torch(filename):
    lines = open(filename,'r').readlines()
    return parse_pdb_lines_torch(lines)

#'''
def parse_pdb_lines_torch(lines):

    # indices of residues observed in the structure
    pdb_idx = []
    for l in lines:
      if l[:4]=="ATOM" and l[12:16].strip()=="CA":
        idx = ( l[21:22].strip(), int(l[22:26].strip()) )
        if idx not in pdb_idx:
          pdb_idx.append(idx)
 
    # 4 BB + up to 10 SC atoms
    xyz = np.full((len(pdb_idx), 27, 3), np.nan, dtype=np.float32)
    for l in lines:
        if l[:4] != "ATOM":
            continue
        chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20]
        idx = pdb_idx.index((chain,resNo))
        for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]):
            if tgtatm == atom:
                xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
                break
    # save atom mask
    mask = np.logical_not(np.isnan(xyz[...,0]))
    xyz[np.isnan(xyz[...,0])] = 0.0

    return xyz,mask,np.array(pdb_idx)

def parse_pdb(filename, **kwargs):
    '''extract xyz coords for all heavy atoms'''
    lines = open(filename,'r').readlines()
    return parse_pdb_lines(lines, **kwargs)

def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True):
    # indices of residues observed in the structure
    res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]
    seq = [aa2num[r[1]] if r[1] in aa2num.keys() else 20 for r in res]
    pdb_idx = [( l[21:22].strip(), int(l[22:26].strip()) ) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]  # chain letter, res num
    
    # 4 BB + up to 10 SC atoms
    xyz = np.full((len(res), 27, 3), np.nan, dtype=np.float32)
    for l in lines:
        if l[:4] != "ATOM":
            continue
        chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20]
        idx = pdb_idx.index((chain,resNo))
        for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]):
            if tgtatm is not None and tgtatm.strip() == atom.strip(): # ignore whitespace
                xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
                break
        
    # save atom mask
    mask = np.logical_not(np.isnan(xyz[...,0]))
    xyz[np.isnan(xyz[...,0])] = 0.0 
    # remove duplicated (chain, resi)
    new_idx = []
    i_unique = []
    for i,idx in enumerate(pdb_idx):
        if idx not in new_idx:
            new_idx.append(idx)
            i_unique.append(i)
    
    pdb_idx = new_idx
    xyz = xyz[i_unique]
    mask = mask[i_unique]
    seq = np.array(seq)[i_unique]

    out = {'xyz':xyz, # cartesian coordinates, [Lx14]
            'mask':mask, # mask showing which atoms are present in the PDB file, [Lx14]
            'idx':np.array([i[1] for i in pdb_idx]), # residue numbers in the PDB file, [L]
            'seq':np.array(seq), # amino acid sequence, [L]
            'pdb_idx': pdb_idx,  # list of (chain letter, residue number) in the pdb file, [L]
           }
    # heteroatoms (ligands, etc)
    if parse_hetatom:
        xyz_het, info_het = [], []
        for l in lines:
            if l[:6]=='HETATM' and not (ignore_het_h and l[77]=='H'):
                info_het.append(dict(
                    idx=int(l[7:11]),
                    atom_id=l[12:16],
                    atom_type=l[77],
                    name=l[16:20]
                ))
                xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])])

        out['xyz_het'] = np.array(xyz_het)
        out['info_het'] = info_het

    return out

num2aa=[
    'ALA','ARG','ASN','ASP','CYS',
    'GLN','GLU','GLY','HIS','ILE',
    'LEU','LYS','MET','PHE','PRO',
    'SER','THR','TRP','TYR','VAL',
    'UNK','MAS',
    ]   

aa2num= {x:i for i,x in enumerate(num2aa)}
# full sc atom representation (Nx14)
aa2long=[
    (" N  "," CA "," C  "," O  "," CB ",  None,  None,  None,  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","3HB ",  None,  None,  None,  None,  None,  None,  None,  None), # ala
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2",  None,  None,  None," H  "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg
    (" N  "," CA "," C  "," O  "," CB "," CG "," OD1"," ND2",  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","1HD2","2HD2",  None,  None,  None,  None,  None,  None,  None), # asn
    (" N  "," CA "," C  "," O  "," CB "," CG "," OD1"," OD2",  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ",  None,  None,  None,  None,  None,  None,  None,  None,  None), # asp
    (" N  "," CA "," C  "," O  "," CB "," SG ",  None,  None,  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB "," HG ",  None,  None,  None,  None,  None,  None,  None,  None), # cys
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD "," OE1"," NE2",  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2",  None,  None,  None,  None,  None), # gln
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD "," OE1"," OE2",  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","1HG ","2HG ",  None,  None,  None,  None,  None,  None,  None), # glu
    (" N  "," CA "," C  "," O  ",  None,  None,  None,  None,  None,  None,  None,  None,  None,  None," H  ","1HA ","2HA ",  None,  None,  None,  None,  None,  None,  None,  None,  None,  None), # gly
    (" N  "," CA "," C  "," O  "," CB "," CG "," ND1"," CD2"," CE1"," NE2",  None,  None,  None,  None," H  "," HA ","1HB ","2HB "," HD2"," HE1"," HE2",  None,  None,  None,  None,  None,  None), # his
    (" N  "," CA "," C  "," O  "," CB "," CG1"," CG2"," CD1",  None,  None,  None,  None,  None,  None," H  "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1",  None,  None), # ile
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD1"," CD2",  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2",  None,  None), # leu
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD "," CE "," NZ ",  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys
    (" N  "," CA "," C  "," O  "," CB "," CG "," SD "," CE ",  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ",  None,  None,  None,  None), # met
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ ",  None,  None,  None," H  "," HA ","1HB ","2HB "," HD1"," HD2"," HE1"," HE2"," HZ ",  None,  None,  None,  None), # phe
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD ",  None,  None,  None,  None,  None,  None,  None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ",  None,  None,  None,  None,  None,  None), # pro
    (" N  "," CA "," C  "," O  "," CB "," OG ",  None,  None,  None,  None,  None,  None,  None,  None," H  "," HG "," HA ","1HB ","2HB ",  None,  None,  None,  None,  None,  None,  None,  None), # ser
    (" N  "," CA "," C  "," O  "," CB "," OG1"," CG2",  None,  None,  None,  None,  None,  None,  None," H  "," HG1"," HA "," HB ","1HG2","2HG2","3HG2",  None,  None,  None,  None,  None,  None), # thr
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H  "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3",  None,  None,  None), # trp
    (" N  "," CA "," C  "," O  "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ "," OH ",  None,  None," H  "," HA ","1HB ","2HB "," HD1"," HE1"," HE2"," HD2"," HH ",  None,  None,  None,  None), # tyr
    (" N  "," CA "," C  "," O  "," CB "," CG1"," CG2",  None,  None,  None,  None,  None,  None,  None," H  "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2",  None,  None,  None,  None), # val
    (" N  "," CA "," C  "," O  "," CB ",  None,  None,  None,  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","3HB ",  None,  None,  None,  None,  None,  None,  None,  None), # unk
    (" N  "," CA "," C  "," O  "," CB ",  None,  None,  None,  None,  None,  None,  None,  None,  None," H  "," HA ","1HB ","2HB ","3HB ",  None,  None,  None,  None,  None,  None,  None,  None), # mask
]

def get_sse(ca_coord):
  '''
  calculates the SSE of a peptide chain based on the P-SEA algorithm (Labesse 1997)
  code borrowed from biokite: https://github.com/biokit/biokit
  '''
  def vector_dot(v1,v2): return (v1*v2).sum(-1)
  def norm_vector(v): return v / np.linalg.norm(v, axis=-1, keepdims=True)
  def displacement(atoms1, atoms2):
    v1 = np.asarray(atoms1)
    v2 = np.asarray(atoms2)
    if len(v1.shape) <= len(v2.shape):
      diff = v2 - v1
    else:
      diff = -(v1 - v2)
    return diff
  def distance(atoms1, atoms2):
    diff = displacement(atoms1, atoms2)
    return np.sqrt(vector_dot(diff, diff))

  def angle(atoms1, atoms2, atoms3):
    v1 = norm_vector(displacement(atoms1, atoms2))
    v2 = norm_vector(displacement(atoms3, atoms2))
    return np.arccos(vector_dot(v1,v2))

  def dihedral(atoms1, atoms2, atoms3, atoms4):
    v1 = norm_vector(displacement(atoms1, atoms2))
    v2 = norm_vector(displacement(atoms2, atoms3))
    v3 = norm_vector(displacement(atoms3, atoms4))
    
    n1 = np.cross(v1, v2)
    n2 = np.cross(v2, v3)
    
    # Calculation using atan2, to ensure the correct sign of the angle 
    x = vector_dot(n1,n2)
    y = vector_dot(np.cross(n1,n2), v2)
    return np.arctan2(y,x)

  _radians_to_angle = 2*np.pi/360

  _r_helix = ((89-12)*_radians_to_angle, (89+12)*_radians_to_angle)
  _a_helix = ((50-20)*_radians_to_angle, (50+20)*_radians_to_angle)
  _d2_helix = ((5.5-0.5), (5.5+0.5))
  _d3_helix = ((5.3-0.5), (5.3+0.5))
  _d4_helix = ((6.4-0.6), (6.4+0.6))

  _r_strand = ((124-14)*_radians_to_angle, (124+14)*_radians_to_angle)
  _a_strand = ((-180)*_radians_to_angle, (-125)*_radians_to_angle,
              (145)*_radians_to_angle, (180)*_radians_to_angle)
  _d2_strand = ((6.7-0.6), (6.7+0.6))
  _d3_strand = ((9.9-0.9), (9.9+0.9))
  _d4_strand = ((12.4-1.1), (12.4+1.1))

  # Filter all CA atoms in the relevant chain.

  d2i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
  d3i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
  d4i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
  ri_coord = np.full(( len(ca_coord), 3, 3 ), np.nan)
  ai_coord = np.full(( len(ca_coord), 4, 3 ), np.nan)
  
  # The distances and angles are not defined for the entire interval,
  # therefore the indices do not have the full range
  # Values that are not defined are NaN
  for i in range(1, len(ca_coord)-1): d2i_coord[i] = (ca_coord[i-1], ca_coord[i+1])
  for i in range(1, len(ca_coord)-2): d3i_coord[i] = (ca_coord[i-1], ca_coord[i+2])
  for i in range(1, len(ca_coord)-3): d4i_coord[i] = (ca_coord[i-1], ca_coord[i+3])
  for i in range(1, len(ca_coord)-1): ri_coord[i]  = (ca_coord[i-1], ca_coord[i], ca_coord[i+1])
  for i in range(1, len(ca_coord)-2): ai_coord[i]  = (ca_coord[i-1], ca_coord[i], ca_coord[i+1], ca_coord[i+2])
  
  d2i = distance(d2i_coord[:,0], d2i_coord[:,1])
  d3i = distance(d3i_coord[:,0], d3i_coord[:,1])
  d4i = distance(d4i_coord[:,0], d4i_coord[:,1])
  ri = angle(ri_coord[:,0], ri_coord[:,1], ri_coord[:,2])
  ai = dihedral(ai_coord[:,0], ai_coord[:,1], ai_coord[:,2], ai_coord[:,3])
  
  sse = ["L"] * len(ca_coord)
  
  # Annotate helices
  # Find CA that meet criteria for potential helices
  is_pot_helix = np.zeros(len(sse), dtype=bool)
  for i in range(len(sse)):
    if (
            d3i[i] >= _d3_helix[0] and d3i[i] <= _d3_helix[1]
        and d4i[i] >= _d4_helix[0] and d4i[i] <= _d4_helix[1]
        ) or (
            ri[i] >= _r_helix[0] and ri[i] <= _r_helix[1]
        and ai[i] >= _a_helix[0] and ai[i] <= _a_helix[1]
        ):
          is_pot_helix[i] = True
  # Real helices are 5 consecutive helix elements
  is_helix = np.zeros(len(sse), dtype=bool)
  counter = 0
  for i in range(len(sse)):
    if is_pot_helix[i]:
      counter += 1
    else:
      if counter >= 5:
        is_helix[i-counter : i] = True
      counter = 0
  # Extend the helices by one at each end if CA meets extension criteria
  i = 0
  while i < len(sse):
    if is_helix[i]:
      sse[i] = "H"
      if (
          d3i[i-1] >= _d3_helix[0] and d3i[i-1] <= _d3_helix[1]
          ) or (
          ri[i-1] >= _r_helix[0] and ri[i-1] <= _r_helix[1]
          ):
            sse[i-1] = "H"
      sse[i] = "H"
      if (
          d3i[i+1] >= _d3_helix[0] and d3i[i+1] <= _d3_helix[1]
          ) or (
          ri[i+1] >= _r_helix[0] and ri[i+1] <= _r_helix[1]
          ):
            sse[i+1] = "H"
    i += 1
  
  # Annotate sheets
  # Find CA that meet criteria for potential strands
  is_pot_strand = np.zeros(len(sse), dtype=bool)
  for i in range(len(sse)):
    if (    d2i[i] >= _d2_strand[0] and d2i[i] <= _d2_strand[1]
        and d3i[i] >= _d3_strand[0] and d3i[i] <= _d3_strand[1]
        and d4i[i] >= _d4_strand[0] and d4i[i] <= _d4_strand[1]
        ) or (
          ri[i] >= _r_strand[0] and ri[i] <= _r_strand[1]
        and (   (ai[i] >= _a_strand[0] and ai[i] <= _a_strand[1])
              or (ai[i] >= _a_strand[2] and ai[i] <= _a_strand[3]))
        ):
          is_pot_strand[i] = True
  # Real strands are 5 consecutive strand elements,
  # or shorter fragments of at least 3 consecutive strand residues,
  # if they are in hydrogen bond proximity to 5 other residues
  pot_strand_coord = ca_coord[is_pot_strand]
  is_strand = np.zeros(len(sse), dtype=bool)
  counter = 0
  contacts = 0
  for i in range(len(sse)):
    if is_pot_strand[i]:
      counter += 1
      coord = ca_coord[i]
      for strand_coord in ca_coord:
        dist = distance(coord, strand_coord)
        if dist >= 4.2 and dist <= 5.2:
          contacts += 1
    else:
      if counter >= 4:
        is_strand[i-counter : i] = True
      elif counter == 3 and contacts >= 5:
        is_strand[i-counter : i] = True
      counter = 0
      contacts = 0
  # Extend the strands by one at each end if CA meets extension criteria
  i = 0
  while i < len(sse):
    if is_strand[i]:
      sse[i] = "E"
      if d3i[i-1] >= _d3_strand[0] and d3i[i-1] <= _d3_strand[1]:
        sse[i-1] = "E"
      sse[i] = "E"
      if d3i[i+1] >= _d3_strand[0] and d3i[i+1] <= _d3_strand[1]:
        sse[i+1] = "E"
    i += 1
  return sse

if __name__ == "__main__":
    main()