File size: 8,609 Bytes
6b89792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT

import dgl
import numpy as np
import torch
import torch.nn as nn
from dgl import DGLGraph
from dgl.ops import edge_softmax
from torch import Tensor
from typing import Dict, Optional, Union

from se3_transformer.model.fiber import Fiber
from se3_transformer.model.layers.convolution import ConvSE3, ConvSE3FuseLevel
from se3_transformer.model.layers.linear import LinearSE3
from se3_transformer.runtime.utils import degree_to_dim, aggregate_residual, unfuse_features
from torch.cuda.nvtx import range as nvtx_range


class AttentionSE3(nn.Module):
    """ Multi-headed sparse graph self-attention (SE(3)-equivariant) """

    def __init__(
            self,
            num_heads: int,
            key_fiber: Fiber,
            value_fiber: Fiber
    ):
        """
        :param num_heads:     Number of attention heads
        :param key_fiber:     Fiber for the keys (and also for the queries)
        :param value_fiber:   Fiber for the values
        """
        super().__init__()
        self.num_heads = num_heads
        self.key_fiber = key_fiber
        self.value_fiber = value_fiber

    def forward(
            self,
            value: Union[Tensor, Dict[str, Tensor]],  # edge features (may be fused)
            key: Union[Tensor, Dict[str, Tensor]],  # edge features (may be fused)
            query: Dict[str, Tensor],  # node features
            graph: DGLGraph
    ):
        with nvtx_range('AttentionSE3'):
            with nvtx_range('reshape keys and queries'):
                if isinstance(key, Tensor):
                    # case where features of all types are fused
                    key = key.reshape(key.shape[0], self.num_heads, -1)
                    # need to reshape queries that way to keep the same layout as keys
                    out = torch.cat([query[str(d)] for d in self.key_fiber.degrees], dim=-1)
                    query = out.reshape(list(query.values())[0].shape[0], self.num_heads, -1)
                else:
                    # features are not fused, need to fuse and reshape them
                    key = self.key_fiber.to_attention_heads(key, self.num_heads)
                    query = self.key_fiber.to_attention_heads(query, self.num_heads)

            with nvtx_range('attention dot product + softmax'):
                # Compute attention weights (softmax of inner product between key and query)
                edge_weights = dgl.ops.e_dot_v(graph, key, query).squeeze(-1)
                edge_weights /= np.sqrt(self.key_fiber.num_features)
                edge_weights = edge_softmax(graph, edge_weights)
                edge_weights = edge_weights[..., None, None]

            with nvtx_range('weighted sum'):
                if isinstance(value, Tensor):
                    # features of all types are fused
                    v = value.view(value.shape[0], self.num_heads, -1, value.shape[-1])
                    weights = edge_weights * v
                    feat_out = dgl.ops.copy_e_sum(graph, weights)
                    feat_out = feat_out.view(feat_out.shape[0], -1, feat_out.shape[-1])  # merge heads
                    out = unfuse_features(feat_out, self.value_fiber.degrees)
                else:
                    out = {}
                    for degree, channels in self.value_fiber:
                        v = value[str(degree)].view(-1, self.num_heads, channels // self.num_heads,
                                                    degree_to_dim(degree))
                        weights = edge_weights * v
                        res = dgl.ops.copy_e_sum(graph, weights)
                        out[str(degree)] = res.view(-1, channels, degree_to_dim(degree))  # merge heads

                return out


class AttentionBlockSE3(nn.Module):
    """ Multi-headed sparse graph self-attention block with skip connection, linear projection (SE(3)-equivariant) """

    def __init__(
            self,
            fiber_in: Fiber,
            fiber_out: Fiber,
            fiber_edge: Optional[Fiber] = None,
            num_heads: int = 4,
            channels_div: int = 2,
            use_layer_norm: bool = False,
            max_degree: bool = 4,
            fuse_level: ConvSE3FuseLevel = ConvSE3FuseLevel.FULL,
            **kwargs
    ):
        """
        :param fiber_in:         Fiber describing the input features
        :param fiber_out:        Fiber describing the output features
        :param fiber_edge:       Fiber describing the edge features (node distances excluded)
        :param num_heads:        Number of attention heads
        :param channels_div:     Divide the channels by this integer for computing values
        :param use_layer_norm:   Apply layer normalization between MLP layers
        :param max_degree:       Maximum degree used in the bases computation
        :param fuse_level:       Maximum fuse level to use in TFN convolutions
        """
        super().__init__()
        if fiber_edge is None:
            fiber_edge = Fiber({})
        self.fiber_in = fiber_in
        # value_fiber has same structure as fiber_out but #channels divided by 'channels_div'
        value_fiber = Fiber([(degree, channels // channels_div) for degree, channels in fiber_out])
        # key_query_fiber has the same structure as fiber_out, but only degrees which are in in_fiber
        # (queries are merely projected, hence degrees have to match input)
        key_query_fiber = Fiber([(fe.degree, fe.channels) for fe in value_fiber if fe.degree in fiber_in.degrees])

        self.to_key_value = ConvSE3(fiber_in, value_fiber + key_query_fiber, pool=False, fiber_edge=fiber_edge,
                                    use_layer_norm=use_layer_norm, max_degree=max_degree, fuse_level=fuse_level,
                                    allow_fused_output=True)
        self.to_query = LinearSE3(fiber_in, key_query_fiber)
        self.attention = AttentionSE3(num_heads, key_query_fiber, value_fiber)
        self.project = LinearSE3(value_fiber + fiber_in, fiber_out)

    def forward(
            self,
            node_features: Dict[str, Tensor],
            edge_features: Dict[str, Tensor],
            graph: DGLGraph,
            basis: Dict[str, Tensor]
    ):
        with nvtx_range('AttentionBlockSE3'):
            with nvtx_range('keys / values'):
                fused_key_value = self.to_key_value(node_features, edge_features, graph, basis)
                key, value = self._get_key_value_from_fused(fused_key_value)

            with nvtx_range('queries'):
                query = self.to_query(node_features)
            
            z = self.attention(value, key, query, graph)
            z_concat = aggregate_residual(node_features, z, 'cat')
            return self.project(z_concat)

    def _get_key_value_from_fused(self, fused_key_value):
        # Extract keys and queries features from fused features
        if isinstance(fused_key_value, Tensor):
            # Previous layer was a fully fused convolution
            value, key = torch.chunk(fused_key_value, chunks=2, dim=-2)
        else:
            key, value = {}, {}
            for degree, feat in fused_key_value.items():
                if int(degree) in self.fiber_in.degrees:
                    value[degree], key[degree] = torch.chunk(feat, chunks=2, dim=-2)
                else:
                    value[degree] = feat

        return key, value