Spaces:
Runtime error
Runtime error
File size: 5,392 Bytes
6b89792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
import logging
import time
from abc import ABC, abstractmethod
from typing import Optional
import numpy as np
import torch
from se3_transformer.runtime.loggers import Logger
from se3_transformer.runtime.metrics import MeanAbsoluteError
class BaseCallback(ABC):
def on_fit_start(self, optimizer, args):
pass
def on_fit_end(self):
pass
def on_epoch_end(self):
pass
def on_batch_start(self):
pass
def on_validation_step(self, input, target, pred):
pass
def on_validation_end(self, epoch=None):
pass
def on_checkpoint_load(self, checkpoint):
pass
def on_checkpoint_save(self, checkpoint):
pass
class LRSchedulerCallback(BaseCallback):
def __init__(self, logger: Optional[Logger] = None):
self.logger = logger
self.scheduler = None
@abstractmethod
def get_scheduler(self, optimizer, args):
pass
def on_fit_start(self, optimizer, args):
self.scheduler = self.get_scheduler(optimizer, args)
def on_checkpoint_load(self, checkpoint):
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
def on_checkpoint_save(self, checkpoint):
checkpoint['scheduler_state_dict'] = self.scheduler.state_dict()
def on_epoch_end(self):
if self.logger is not None:
self.logger.log_metrics({'learning rate': self.scheduler.get_last_lr()[0]}, step=self.scheduler.last_epoch)
self.scheduler.step()
class QM9MetricCallback(BaseCallback):
""" Logs the rescaled mean absolute error for QM9 regression tasks """
def __init__(self, logger, targets_std, prefix=''):
self.mae = MeanAbsoluteError()
self.logger = logger
self.targets_std = targets_std
self.prefix = prefix
self.best_mae = float('inf')
def on_validation_step(self, input, target, pred):
self.mae(pred.detach(), target.detach())
def on_validation_end(self, epoch=None):
mae = self.mae.compute() * self.targets_std
logging.info(f'{self.prefix} MAE: {mae}')
self.logger.log_metrics({f'{self.prefix} MAE': mae}, epoch)
self.best_mae = min(self.best_mae, mae)
def on_fit_end(self):
if self.best_mae != float('inf'):
self.logger.log_metrics({f'{self.prefix} best MAE': self.best_mae})
class QM9LRSchedulerCallback(LRSchedulerCallback):
def __init__(self, logger, epochs):
super().__init__(logger)
self.epochs = epochs
def get_scheduler(self, optimizer, args):
min_lr = args.min_learning_rate if args.min_learning_rate else args.learning_rate / 10.0
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, self.epochs, eta_min=min_lr)
class PerformanceCallback(BaseCallback):
def __init__(self, logger, batch_size: int, warmup_epochs: int = 1, mode: str = 'train'):
self.batch_size = batch_size
self.warmup_epochs = warmup_epochs
self.epoch = 0
self.timestamps = []
self.mode = mode
self.logger = logger
def on_batch_start(self):
if self.epoch >= self.warmup_epochs:
self.timestamps.append(time.time() * 1000.0)
def _log_perf(self):
stats = self.process_performance_stats()
for k, v in stats.items():
logging.info(f'performance {k}: {v}')
self.logger.log_metrics(stats)
def on_epoch_end(self):
self.epoch += 1
def on_fit_end(self):
if self.epoch > self.warmup_epochs:
self._log_perf()
self.timestamps = []
def process_performance_stats(self):
timestamps = np.asarray(self.timestamps)
deltas = np.diff(timestamps)
throughput = (self.batch_size / deltas).mean()
stats = {
f"throughput_{self.mode}": throughput,
f"latency_{self.mode}_mean": deltas.mean(),
f"total_time_{self.mode}": timestamps[-1] - timestamps[0],
}
for level in [90, 95, 99]:
stats.update({f"latency_{self.mode}_{level}": np.percentile(deltas, level)})
return stats
|