File size: 7,998 Bytes
a507bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
from typing import Tuple

import dgl
import pathlib
import torch
from dgl.data import QM9EdgeDataset
from dgl import DGLGraph
from torch import Tensor
from torch.utils.data import random_split, DataLoader, Dataset
from tqdm import tqdm

from se3_transformer.data_loading.data_module import DataModule
from se3_transformer.model.basis import get_basis
from se3_transformer.runtime.utils import get_local_rank, str2bool, using_tensor_cores


def _get_relative_pos(qm9_graph: DGLGraph) -> Tensor:
    x = qm9_graph.ndata['pos']
    src, dst = qm9_graph.edges()
    rel_pos = x[dst] - x[src]
    return rel_pos


def _get_split_sizes(full_dataset: Dataset) -> Tuple[int, int, int]:
    len_full = len(full_dataset)
    len_train = 100_000
    len_test = int(0.1 * len_full)
    len_val = len_full - len_train - len_test
    return len_train, len_val, len_test


class QM9DataModule(DataModule):
    """
    Datamodule wrapping https://docs.dgl.ai/en/latest/api/python/dgl.data.html#qm9edge-dataset
    Training set is 100k molecules. Test set is 10% of the dataset. Validation set is the rest.
    This includes all the molecules from QM9 except the ones that are uncharacterized.
    """

    NODE_FEATURE_DIM = 6
    EDGE_FEATURE_DIM = 4

    def __init__(self,
                 data_dir: pathlib.Path,
                 task: str = 'homo',
                 batch_size: int = 240,
                 num_workers: int = 8,
                 num_degrees: int = 4,
                 amp: bool = False,
                 precompute_bases: bool = False,
                 **kwargs):
        self.data_dir = data_dir  # This needs to be before __init__ so that prepare_data has access to it
        super().__init__(batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate)
        self.amp = amp
        self.task = task
        self.batch_size = batch_size
        self.num_degrees = num_degrees

        qm9_kwargs = dict(label_keys=[self.task], verbose=False, raw_dir=str(data_dir))
        if precompute_bases:
            bases_kwargs = dict(max_degree=num_degrees - 1, use_pad_trick=using_tensor_cores(amp), amp=amp)
            full_dataset = CachedBasesQM9EdgeDataset(bases_kwargs=bases_kwargs, batch_size=batch_size,
                                                     num_workers=num_workers, **qm9_kwargs)
        else:
            full_dataset = QM9EdgeDataset(**qm9_kwargs)

        self.ds_train, self.ds_val, self.ds_test = random_split(full_dataset, _get_split_sizes(full_dataset),
                                                                generator=torch.Generator().manual_seed(0))

        train_targets = full_dataset.targets[self.ds_train.indices, full_dataset.label_keys[0]]
        self.targets_mean = train_targets.mean()
        self.targets_std = train_targets.std()

    def prepare_data(self):
        # Download the QM9 preprocessed data
        QM9EdgeDataset(verbose=True, raw_dir=str(self.data_dir))

    def _collate(self, samples):
        graphs, y, *bases = map(list, zip(*samples))
        batched_graph = dgl.batch(graphs)
        edge_feats = {'0': batched_graph.edata['edge_attr'][..., None]}
        batched_graph.edata['rel_pos'] = _get_relative_pos(batched_graph)
        # get node features
        node_feats = {'0': batched_graph.ndata['attr'][:, :6, None]}
        targets = (torch.cat(y) - self.targets_mean) / self.targets_std

        if bases:
            # collate bases
            all_bases = {
                key: torch.cat([b[key] for b in bases[0]], dim=0)
                for key in bases[0][0].keys()
            }

            return batched_graph, node_feats, edge_feats, all_bases, targets
        else:
            return batched_graph, node_feats, edge_feats, targets

    @staticmethod
    def add_argparse_args(parent_parser):
        parser = parent_parser.add_argument_group("QM9 dataset")
        parser.add_argument('--task', type=str, default='homo', const='homo', nargs='?',
                            choices=['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv',
                                     'U0_atom', 'U_atom', 'H_atom', 'G_atom', 'A', 'B', 'C'],
                            help='Regression task to train on')
        parser.add_argument('--precompute_bases', type=str2bool, nargs='?', const=True, default=False,
                            help='Precompute bases at the beginning of the script during dataset initialization,'
                                 ' instead of computing them at the beginning of each forward pass.')
        return parent_parser

    def __repr__(self):
        return f'QM9({self.task})'


class CachedBasesQM9EdgeDataset(QM9EdgeDataset):
    """ Dataset extending the QM9 dataset from DGL with precomputed (cached in RAM) pairwise bases """

    def __init__(self, bases_kwargs: dict, batch_size: int, num_workers: int, *args, **kwargs):
        """
        :param bases_kwargs:  Arguments to feed the bases computation function
        :param batch_size:    Batch size to use when iterating over the dataset for computing bases
        """
        self.bases_kwargs = bases_kwargs
        self.batch_size = batch_size
        self.bases = None
        self.num_workers = num_workers
        super().__init__(*args, **kwargs)

    def load(self):
        super().load()
        # Iterate through the dataset and compute bases (pairwise only)
        # Potential improvement: use multi-GPU and gather
        dataloader = DataLoader(self, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers,
                                collate_fn=lambda samples: dgl.batch([sample[0] for sample in samples]))
        bases = []
        for i, graph in tqdm(enumerate(dataloader), total=len(dataloader), desc='Precomputing QM9 bases',
                             disable=get_local_rank() != 0):
            rel_pos = _get_relative_pos(graph)
            # Compute the bases with the GPU but convert the result to CPU to store in RAM
            bases.append({k: v.cpu() for k, v in get_basis(rel_pos.cuda(), **self.bases_kwargs).items()})
        self.bases = bases  # Assign at the end so that __getitem__ isn't confused

    def __getitem__(self, idx: int):
        graph, label = super().__getitem__(idx)

        if self.bases:
            bases_idx = idx // self.batch_size
            bases_cumsum_idx = self.ne_cumsum[idx] - self.ne_cumsum[bases_idx * self.batch_size]
            bases_cumsum_next_idx = self.ne_cumsum[idx + 1] - self.ne_cumsum[bases_idx * self.batch_size]
            return graph, label, {key: basis[bases_cumsum_idx:bases_cumsum_next_idx] for key, basis in
                                  self.bases[bases_idx].items()}
        else:
            return graph, label