File size: 5,392 Bytes
a507bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT

import logging
import time
from abc import ABC, abstractmethod
from typing import Optional

import numpy as np
import torch

from se3_transformer.runtime.loggers import Logger
from se3_transformer.runtime.metrics import MeanAbsoluteError


class BaseCallback(ABC):
    def on_fit_start(self, optimizer, args):
        pass

    def on_fit_end(self):
        pass

    def on_epoch_end(self):
        pass

    def on_batch_start(self):
        pass

    def on_validation_step(self, input, target, pred):
        pass

    def on_validation_end(self, epoch=None):
        pass

    def on_checkpoint_load(self, checkpoint):
        pass

    def on_checkpoint_save(self, checkpoint):
        pass


class LRSchedulerCallback(BaseCallback):
    def __init__(self, logger: Optional[Logger] = None):
        self.logger = logger
        self.scheduler = None

    @abstractmethod
    def get_scheduler(self, optimizer, args):
        pass

    def on_fit_start(self, optimizer, args):
        self.scheduler = self.get_scheduler(optimizer, args)

    def on_checkpoint_load(self, checkpoint):
        self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])

    def on_checkpoint_save(self, checkpoint):
        checkpoint['scheduler_state_dict'] = self.scheduler.state_dict()

    def on_epoch_end(self):
        if self.logger is not None:
            self.logger.log_metrics({'learning rate': self.scheduler.get_last_lr()[0]}, step=self.scheduler.last_epoch)
        self.scheduler.step()


class QM9MetricCallback(BaseCallback):
    """ Logs the rescaled mean absolute error for QM9 regression tasks """

    def __init__(self, logger, targets_std, prefix=''):
        self.mae = MeanAbsoluteError()
        self.logger = logger
        self.targets_std = targets_std
        self.prefix = prefix
        self.best_mae = float('inf')

    def on_validation_step(self, input, target, pred):
        self.mae(pred.detach(), target.detach())

    def on_validation_end(self, epoch=None):
        mae = self.mae.compute() * self.targets_std
        logging.info(f'{self.prefix} MAE: {mae}')
        self.logger.log_metrics({f'{self.prefix} MAE': mae}, epoch)
        self.best_mae = min(self.best_mae, mae)

    def on_fit_end(self):
        if self.best_mae != float('inf'):
            self.logger.log_metrics({f'{self.prefix} best MAE': self.best_mae})


class QM9LRSchedulerCallback(LRSchedulerCallback):
    def __init__(self, logger, epochs):
        super().__init__(logger)
        self.epochs = epochs

    def get_scheduler(self, optimizer, args):
        min_lr = args.min_learning_rate if args.min_learning_rate else args.learning_rate / 10.0
        return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, self.epochs, eta_min=min_lr)


class PerformanceCallback(BaseCallback):
    def __init__(self, logger, batch_size: int, warmup_epochs: int = 1, mode: str = 'train'):
        self.batch_size = batch_size
        self.warmup_epochs = warmup_epochs
        self.epoch = 0
        self.timestamps = []
        self.mode = mode
        self.logger = logger

    def on_batch_start(self):
        if self.epoch >= self.warmup_epochs:
            self.timestamps.append(time.time() * 1000.0)

    def _log_perf(self):
        stats = self.process_performance_stats()
        for k, v in stats.items():
            logging.info(f'performance {k}: {v}')

        self.logger.log_metrics(stats)

    def on_epoch_end(self):
        self.epoch += 1

    def on_fit_end(self):
        if self.epoch > self.warmup_epochs:
            self._log_perf()
            self.timestamps = []

    def process_performance_stats(self):
        timestamps = np.asarray(self.timestamps)
        deltas = np.diff(timestamps)
        throughput = (self.batch_size / deltas).mean()
        stats = {
            f"throughput_{self.mode}": throughput,
            f"latency_{self.mode}_mean": deltas.mean(),
            f"total_time_{self.mode}": timestamps[-1] - timestamps[0],
        }
        for level in [90, 95, 99]:
            stats.update({f"latency_{self.mode}_{level}": np.percentile(deltas, level)})

        return stats