Spaces:
Runtime error
Runtime error
File size: 4,664 Bytes
b14983e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
import pathlib
from abc import ABC, abstractmethod
from enum import Enum
from typing import Dict, Any, Callable, Optional
import dllogger
import torch.distributed as dist
import wandb
from dllogger import Verbosity
from se3_transformer.runtime.utils import rank_zero_only
class Logger(ABC):
@rank_zero_only
@abstractmethod
def log_hyperparams(self, params):
pass
@rank_zero_only
@abstractmethod
def log_metrics(self, metrics, step=None):
pass
@staticmethod
def _sanitize_params(params):
def _sanitize(val):
if isinstance(val, Callable):
try:
_val = val()
if isinstance(_val, Callable):
return val.__name__
return _val
except Exception:
return getattr(val, "__name__", None)
elif isinstance(val, pathlib.Path) or isinstance(val, Enum):
return str(val)
return val
return {key: _sanitize(val) for key, val in params.items()}
class LoggerCollection(Logger):
def __init__(self, loggers):
super().__init__()
self.loggers = loggers
def __getitem__(self, index):
return [logger for logger in self.loggers][index]
@rank_zero_only
def log_metrics(self, metrics, step=None):
for logger in self.loggers:
logger.log_metrics(metrics, step)
@rank_zero_only
def log_hyperparams(self, params):
for logger in self.loggers:
logger.log_hyperparams(params)
class DLLogger(Logger):
def __init__(self, save_dir: pathlib.Path, filename: str):
super().__init__()
if not dist.is_initialized() or dist.get_rank() == 0:
save_dir.mkdir(parents=True, exist_ok=True)
dllogger.init(
backends=[dllogger.JSONStreamBackend(Verbosity.DEFAULT, str(save_dir / filename))])
@rank_zero_only
def log_hyperparams(self, params):
params = self._sanitize_params(params)
dllogger.log(step="PARAMETER", data=params)
@rank_zero_only
def log_metrics(self, metrics, step=None):
if step is None:
step = tuple()
dllogger.log(step=step, data=metrics)
class WandbLogger(Logger):
def __init__(
self,
name: str,
save_dir: pathlib.Path,
id: Optional[str] = None,
project: Optional[str] = None
):
super().__init__()
if not dist.is_initialized() or dist.get_rank() == 0:
save_dir.mkdir(parents=True, exist_ok=True)
self.experiment = wandb.init(name=name,
project=project,
id=id,
dir=str(save_dir),
resume='allow',
anonymous='must')
@rank_zero_only
def log_hyperparams(self, params: Dict[str, Any]) -> None:
params = self._sanitize_params(params)
self.experiment.config.update(params, allow_val_change=True)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
if step is not None:
self.experiment.log({**metrics, 'epoch': step})
else:
self.experiment.log(metrics)
|