Spaces:
Runtime error
Runtime error
File size: 21,500 Bytes
6b89792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
#!/usr/bin/env python
import os,sys,glob,torch,random
import numpy as np
import argparse
try:
import pyrosetta
pyrosetta.init()
APPROX = False
except:
print("WARNING: pyRosetta not found, will use an approximate SSE calculation")
APPROX = True
def main():
args=get_args()
assert args.input_pdb or args.pdb_dir is not None, 'Need to provide either an input pdb (--input_pdb) or a path to pdbs (--pdb_dir)'
assert not (args.input_pdb is not None and args.pdb_dir is not None), 'Need to provide either --input_pdb or --pdb_dir, not both'
os.makedirs(args.out_dir, exist_ok=True)
if args.pdb_dir is not None:
pdbs=glob.glob(f'{args.pdb_dir}/*pdb')
else:
pdbs=[args.input_pdb]
for pdb in pdbs:
name=os.path.split(pdb)[1][:-4]
secstruc_dict=extract_secstruc(pdb)
xyz,_,_ = parse_pdb_torch(pdb)
ss, idx = ss_to_tensor(secstruc_dict)
block_adj = construct_block_adj_matrix(torch.FloatTensor(ss), torch.tensor(xyz)).float()
ss_tens, mask = mask_ss(ss, idx, max_mask=0)
ss_argmax = torch.argmax(ss_tens[:,:4], dim=1).float()
torch.save(ss_argmax, os.path.join(args.out_dir, f'{name}_ss.pt'))
torch.save(block_adj, os.path.join(args.out_dir, f'{name}_adj.pt'))
def get_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--pdb_dir",required=False, help="path to directory of pdbs. Either pass this or the path to a specific pdb (--input_pdb)", default=None)
parser.add_argument("--input_pdb", required=False, help="path to input pdb. Either provide this of path to directory of pdbs (--pdb_dir)", default=None)
parser.add_argument("--out_dir",dest="out_dir", required=True, help='need to specify an output path')
args = parser.parse_args()
return args
def extract_secstruc(fn):
pdb=parse_pdb(fn)
idx = pdb['idx']
if APPROX:
aa_sequence = pdb["seq"]
secstruct = get_sse(pdb["xyz"][:,1])
else:
dssp = pyrosetta.rosetta.core.scoring.dssp
pose = pyrosetta.io.pose_from_pdb(fn)
dssp.Dssp(pose).insert_ss_into_pose(pose, True)
aa_sequence = pose.sequence()
secstruct = pose.secstruct()
secstruc_dict = {'sequence':[i for i in aa_sequence],
'idx':[int(i) for i in idx],
'ss':[i for i in secstruct]}
return secstruc_dict
def ss_to_tensor(ss):
"""
Function to convert ss files to indexed tensors
0 = Helix
1 = Strand
2 = Loop
3 = Mask/unknown
4 = idx for pdb
"""
ss_conv = {'H':0,'E':1,'L':2}
idx = np.array(ss['idx'])
ss_int = np.array([int(ss_conv[i]) for i in ss['ss']])
return ss_int, idx
def mask_ss(ss, idx, min_mask = 0, max_mask = 1.0):
mask_prop = random.uniform(min_mask, max_mask)
transitions = np.where(ss[:-1] - ss[1:] != 0)[0] #gets last index of each block of ss
stuck_counter = 0
while len(ss[ss == 3])/len(ss) < mask_prop or stuck_counter > 100:
width = random.randint(1,9)
start = random.choice(transitions)
offset = random.randint(-8,1)
try:
ss[start+offset:start+offset+width] = 3
except:
stuck_counter += 1
pass
ss = torch.tensor(ss)
ss = torch.nn.functional.one_hot(ss, num_classes=4)
ss = torch.cat((ss, torch.tensor(idx)[...,None]), dim=-1)
# mask = torch.where(torch.argmax(ss[:,:-1], dim=-1) == 3, False, True)
mask=torch.tensor(np.where(np.argmax(ss[:,:-1].numpy(), axis=-1) == 3))
return ss, mask
def generate_Cbeta(N,Ca,C):
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
#Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
# fd: below matches sidechain generator (=Rosetta params)
Cb = -0.57910144*a + 0.5689693*b - 0.5441217*c + Ca
return Cb
def get_pair_dist(a, b):
"""calculate pair distances between two sets of points
Parameters
----------
a,b : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of two sets of atoms
Returns
-------
dist : pytorch tensor of shape [batch,nres,nres]
stores paitwise distances between atoms in a and b
"""
dist = torch.cdist(a, b, p=2)
return dist
def construct_block_adj_matrix( sstruct, xyz, cutoff=6, include_loops=False ):
'''
Given a sstruct specification and backbone coordinates, build a block adjacency matrix.
Input:
sstruct (torch.FloatTensor): (L) length tensor with numeric encoding of sstruct at each position
xyz (torch.FloatTensor): (L,3,3) tensor of Cartesian coordinates of backbone N,Ca,C atoms
cutoff (float): The Cb distance cutoff under which residue pairs are considered adjacent
By eye, Nate thinks 6A is a good Cb distance cutoff
Output:
block_adj (torch.FloatTensor): (L,L) boolean matrix where adjacent secondary structure contacts are 1
'''
L = xyz.shape[0]
# three anchor atoms
N = xyz[:,0]
Ca = xyz[:,1]
C = xyz[:,2]
# recreate Cb given N,Ca,C
Cb = generate_Cbeta(N,Ca,C)
# May need a batch dimension - NRB
dist = get_pair_dist(Cb,Cb) # [L,L]
dist[torch.isnan(dist)] = 999.9
dist += 999.9*torch.eye(L,device=xyz.device)
# Now we have dist matrix and sstruct specification, turn this into a block adjacency matrix
# There is probably a way to do this in closed-form with a beautiful einsum but I am going to do the loop approach
# First: Construct a list of segments and the index at which they begin and end
in_segment = True
segments = []
begin = -1
end = -1
for i in range(sstruct.shape[0]):
# Starting edge case
if i == 0:
begin = 0
continue
if not sstruct[i] == sstruct[i-1]:
end = i
segments.append( (sstruct[i-1], begin, end) )
begin = i
# Ending edge case: last segment is length one
if not end == sstruct.shape[0]:
segments.append( (sstruct[-1], begin, sstruct.shape[0]) )
block_adj = torch.zeros_like(dist)
for i in range(len(segments)):
curr_segment = segments[i]
if curr_segment[0] == 2 and not include_loops: continue
begin_i = curr_segment[1]
end_i = curr_segment[2]
for j in range(i+1, len(segments)):
j_segment = segments[j]
if j_segment[0] == 2 and not include_loops: continue
begin_j = j_segment[1]
end_j = j_segment[2]
if torch.any( dist[begin_i:end_i, begin_j:end_j] < cutoff ):
# Matrix is symmetic
block_adj[begin_i:end_i, begin_j:end_j] = torch.ones(end_i - begin_i, end_j - begin_j)
block_adj[begin_j:end_j, begin_i:end_i] = torch.ones(end_j - begin_j, end_i - begin_i)
return block_adj
def parse_pdb_torch(filename):
lines = open(filename,'r').readlines()
return parse_pdb_lines_torch(lines)
#'''
def parse_pdb_lines_torch(lines):
# indices of residues observed in the structure
pdb_idx = []
for l in lines:
if l[:4]=="ATOM" and l[12:16].strip()=="CA":
idx = ( l[21:22].strip(), int(l[22:26].strip()) )
if idx not in pdb_idx:
pdb_idx.append(idx)
# 4 BB + up to 10 SC atoms
xyz = np.full((len(pdb_idx), 27, 3), np.nan, dtype=np.float32)
for l in lines:
if l[:4] != "ATOM":
continue
chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20]
idx = pdb_idx.index((chain,resNo))
for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]):
if tgtatm == atom:
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
break
# save atom mask
mask = np.logical_not(np.isnan(xyz[...,0]))
xyz[np.isnan(xyz[...,0])] = 0.0
return xyz,mask,np.array(pdb_idx)
def parse_pdb(filename, **kwargs):
'''extract xyz coords for all heavy atoms'''
lines = open(filename,'r').readlines()
return parse_pdb_lines(lines, **kwargs)
def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True):
# indices of residues observed in the structure
res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]
seq = [aa2num[r[1]] if r[1] in aa2num.keys() else 20 for r in res]
pdb_idx = [( l[21:22].strip(), int(l[22:26].strip()) ) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] # chain letter, res num
# 4 BB + up to 10 SC atoms
xyz = np.full((len(res), 27, 3), np.nan, dtype=np.float32)
for l in lines:
if l[:4] != "ATOM":
continue
chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20]
idx = pdb_idx.index((chain,resNo))
for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]):
if tgtatm is not None and tgtatm.strip() == atom.strip(): # ignore whitespace
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
break
# save atom mask
mask = np.logical_not(np.isnan(xyz[...,0]))
xyz[np.isnan(xyz[...,0])] = 0.0
# remove duplicated (chain, resi)
new_idx = []
i_unique = []
for i,idx in enumerate(pdb_idx):
if idx not in new_idx:
new_idx.append(idx)
i_unique.append(i)
pdb_idx = new_idx
xyz = xyz[i_unique]
mask = mask[i_unique]
seq = np.array(seq)[i_unique]
out = {'xyz':xyz, # cartesian coordinates, [Lx14]
'mask':mask, # mask showing which atoms are present in the PDB file, [Lx14]
'idx':np.array([i[1] for i in pdb_idx]), # residue numbers in the PDB file, [L]
'seq':np.array(seq), # amino acid sequence, [L]
'pdb_idx': pdb_idx, # list of (chain letter, residue number) in the pdb file, [L]
}
# heteroatoms (ligands, etc)
if parse_hetatom:
xyz_het, info_het = [], []
for l in lines:
if l[:6]=='HETATM' and not (ignore_het_h and l[77]=='H'):
info_het.append(dict(
idx=int(l[7:11]),
atom_id=l[12:16],
atom_type=l[77],
name=l[16:20]
))
xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])])
out['xyz_het'] = np.array(xyz_het)
out['info_het'] = info_het
return out
num2aa=[
'ALA','ARG','ASN','ASP','CYS',
'GLN','GLU','GLY','HIS','ILE',
'LEU','LYS','MET','PHE','PRO',
'SER','THR','TRP','TYR','VAL',
'UNK','MAS',
]
aa2num= {x:i for i,x in enumerate(num2aa)}
# full sc atom representation (Nx14)
aa2long=[
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # ala
(" N "," CA "," C "," O "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2", None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg
(" N "," CA "," C "," O "," CB "," CG "," OD1"," ND2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HD2","2HD2", None, None, None, None, None, None, None), # asn
(" N "," CA "," C "," O "," CB "," CG "," OD1"," OD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None, None), # asp
(" N "," CA "," C "," O "," CB "," SG ", None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ", None, None, None, None, None, None, None, None), # cys
(" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," NE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2", None, None, None, None, None), # gln
(" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," OE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ", None, None, None, None, None, None, None), # glu
(" N "," CA "," C "," O ", None, None, None, None, None, None, None, None, None, None," H ","1HA ","2HA ", None, None, None, None, None, None, None, None, None, None), # gly
(" N "," CA "," C "," O "," CB "," CG "," ND1"," CD2"," CE1"," NE2", None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1"," HE2", None, None, None, None, None, None), # his
(" N "," CA "," C "," O "," CB "," CG1"," CG2"," CD1", None, None, None, None, None, None," H "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1", None, None), # ile
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2", None, None), # leu
(" N "," CA "," C "," O "," CB "," CG "," CD "," CE "," NZ ", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys
(" N "," CA "," C "," O "," CB "," CG "," SD "," CE ", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ", None, None, None, None), # met
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ ", None, None, None," H "," HA ","1HB ","2HB "," HD1"," HD2"," HE1"," HE2"," HZ ", None, None, None, None), # phe
(" N "," CA "," C "," O "," CB "," CG "," CD ", None, None, None, None, None, None, None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ", None, None, None, None, None, None), # pro
(" N "," CA "," C "," O "," CB "," OG ", None, None, None, None, None, None, None, None," H "," HG "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None), # ser
(" N "," CA "," C "," O "," CB "," OG1"," CG2", None, None, None, None, None, None, None," H "," HG1"," HA "," HB ","1HG2","2HG2","3HG2", None, None, None, None, None, None), # thr
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3", None, None, None), # trp
(" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ "," OH ", None, None," H "," HA ","1HB ","2HB "," HD1"," HE1"," HE2"," HD2"," HH ", None, None, None, None), # tyr
(" N "," CA "," C "," O "," CB "," CG1"," CG2", None, None, None, None, None, None, None," H "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2", None, None, None, None), # val
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # unk
(" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # mask
]
def get_sse(ca_coord):
'''
calculates the SSE of a peptide chain based on the P-SEA algorithm (Labesse 1997)
code borrowed from biokite: https://github.com/biokit/biokit
'''
def vector_dot(v1,v2): return (v1*v2).sum(-1)
def norm_vector(v): return v / np.linalg.norm(v, axis=-1, keepdims=True)
def displacement(atoms1, atoms2):
v1 = np.asarray(atoms1)
v2 = np.asarray(atoms2)
if len(v1.shape) <= len(v2.shape):
diff = v2 - v1
else:
diff = -(v1 - v2)
return diff
def distance(atoms1, atoms2):
diff = displacement(atoms1, atoms2)
return np.sqrt(vector_dot(diff, diff))
def angle(atoms1, atoms2, atoms3):
v1 = norm_vector(displacement(atoms1, atoms2))
v2 = norm_vector(displacement(atoms3, atoms2))
return np.arccos(vector_dot(v1,v2))
def dihedral(atoms1, atoms2, atoms3, atoms4):
v1 = norm_vector(displacement(atoms1, atoms2))
v2 = norm_vector(displacement(atoms2, atoms3))
v3 = norm_vector(displacement(atoms3, atoms4))
n1 = np.cross(v1, v2)
n2 = np.cross(v2, v3)
# Calculation using atan2, to ensure the correct sign of the angle
x = vector_dot(n1,n2)
y = vector_dot(np.cross(n1,n2), v2)
return np.arctan2(y,x)
_radians_to_angle = 2*np.pi/360
_r_helix = ((89-12)*_radians_to_angle, (89+12)*_radians_to_angle)
_a_helix = ((50-20)*_radians_to_angle, (50+20)*_radians_to_angle)
_d2_helix = ((5.5-0.5), (5.5+0.5))
_d3_helix = ((5.3-0.5), (5.3+0.5))
_d4_helix = ((6.4-0.6), (6.4+0.6))
_r_strand = ((124-14)*_radians_to_angle, (124+14)*_radians_to_angle)
_a_strand = ((-180)*_radians_to_angle, (-125)*_radians_to_angle,
(145)*_radians_to_angle, (180)*_radians_to_angle)
_d2_strand = ((6.7-0.6), (6.7+0.6))
_d3_strand = ((9.9-0.9), (9.9+0.9))
_d4_strand = ((12.4-1.1), (12.4+1.1))
# Filter all CA atoms in the relevant chain.
d2i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
d3i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
d4i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan)
ri_coord = np.full(( len(ca_coord), 3, 3 ), np.nan)
ai_coord = np.full(( len(ca_coord), 4, 3 ), np.nan)
# The distances and angles are not defined for the entire interval,
# therefore the indices do not have the full range
# Values that are not defined are NaN
for i in range(1, len(ca_coord)-1): d2i_coord[i] = (ca_coord[i-1], ca_coord[i+1])
for i in range(1, len(ca_coord)-2): d3i_coord[i] = (ca_coord[i-1], ca_coord[i+2])
for i in range(1, len(ca_coord)-3): d4i_coord[i] = (ca_coord[i-1], ca_coord[i+3])
for i in range(1, len(ca_coord)-1): ri_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1])
for i in range(1, len(ca_coord)-2): ai_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1], ca_coord[i+2])
d2i = distance(d2i_coord[:,0], d2i_coord[:,1])
d3i = distance(d3i_coord[:,0], d3i_coord[:,1])
d4i = distance(d4i_coord[:,0], d4i_coord[:,1])
ri = angle(ri_coord[:,0], ri_coord[:,1], ri_coord[:,2])
ai = dihedral(ai_coord[:,0], ai_coord[:,1], ai_coord[:,2], ai_coord[:,3])
sse = ["L"] * len(ca_coord)
# Annotate helices
# Find CA that meet criteria for potential helices
is_pot_helix = np.zeros(len(sse), dtype=bool)
for i in range(len(sse)):
if (
d3i[i] >= _d3_helix[0] and d3i[i] <= _d3_helix[1]
and d4i[i] >= _d4_helix[0] and d4i[i] <= _d4_helix[1]
) or (
ri[i] >= _r_helix[0] and ri[i] <= _r_helix[1]
and ai[i] >= _a_helix[0] and ai[i] <= _a_helix[1]
):
is_pot_helix[i] = True
# Real helices are 5 consecutive helix elements
is_helix = np.zeros(len(sse), dtype=bool)
counter = 0
for i in range(len(sse)):
if is_pot_helix[i]:
counter += 1
else:
if counter >= 5:
is_helix[i-counter : i] = True
counter = 0
# Extend the helices by one at each end if CA meets extension criteria
i = 0
while i < len(sse):
if is_helix[i]:
sse[i] = "H"
if (
d3i[i-1] >= _d3_helix[0] and d3i[i-1] <= _d3_helix[1]
) or (
ri[i-1] >= _r_helix[0] and ri[i-1] <= _r_helix[1]
):
sse[i-1] = "H"
sse[i] = "H"
if (
d3i[i+1] >= _d3_helix[0] and d3i[i+1] <= _d3_helix[1]
) or (
ri[i+1] >= _r_helix[0] and ri[i+1] <= _r_helix[1]
):
sse[i+1] = "H"
i += 1
# Annotate sheets
# Find CA that meet criteria for potential strands
is_pot_strand = np.zeros(len(sse), dtype=bool)
for i in range(len(sse)):
if ( d2i[i] >= _d2_strand[0] and d2i[i] <= _d2_strand[1]
and d3i[i] >= _d3_strand[0] and d3i[i] <= _d3_strand[1]
and d4i[i] >= _d4_strand[0] and d4i[i] <= _d4_strand[1]
) or (
ri[i] >= _r_strand[0] and ri[i] <= _r_strand[1]
and ( (ai[i] >= _a_strand[0] and ai[i] <= _a_strand[1])
or (ai[i] >= _a_strand[2] and ai[i] <= _a_strand[3]))
):
is_pot_strand[i] = True
# Real strands are 5 consecutive strand elements,
# or shorter fragments of at least 3 consecutive strand residues,
# if they are in hydrogen bond proximity to 5 other residues
pot_strand_coord = ca_coord[is_pot_strand]
is_strand = np.zeros(len(sse), dtype=bool)
counter = 0
contacts = 0
for i in range(len(sse)):
if is_pot_strand[i]:
counter += 1
coord = ca_coord[i]
for strand_coord in ca_coord:
dist = distance(coord, strand_coord)
if dist >= 4.2 and dist <= 5.2:
contacts += 1
else:
if counter >= 4:
is_strand[i-counter : i] = True
elif counter == 3 and contacts >= 5:
is_strand[i-counter : i] = True
counter = 0
contacts = 0
# Extend the strands by one at each end if CA meets extension criteria
i = 0
while i < len(sse):
if is_strand[i]:
sse[i] = "E"
if d3i[i-1] >= _d3_strand[0] and d3i[i-1] <= _d3_strand[1]:
sse[i-1] = "E"
sse[i] = "E"
if d3i[i+1] >= _d3_strand[0] and d3i[i+1] <= _d3_strand[1]:
sse[i+1] = "E"
i += 1
return sse
if __name__ == "__main__":
main()
|