File size: 5,325 Bytes
b14983e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT

from typing import List

import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from tqdm import tqdm

from se3_transformer.runtime import gpu_affinity
from se3_transformer.runtime.arguments import PARSER
from se3_transformer.runtime.callbacks import BaseCallback
from se3_transformer.runtime.loggers import DLLogger
from se3_transformer.runtime.utils import to_cuda, get_local_rank


@torch.inference_mode()
def evaluate(model: nn.Module,
             dataloader: DataLoader,
             callbacks: List[BaseCallback],
             args):
    model.eval()
    for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation',
                         leave=False, disable=(args.silent or get_local_rank() != 0)):
        *input, target = to_cuda(batch)

        for callback in callbacks:
            callback.on_batch_start()

        with torch.cuda.amp.autocast(enabled=args.amp):
            pred = model(*input)

            for callback in callbacks:
                callback.on_validation_step(input, target, pred)


if __name__ == '__main__':
    from se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback
    from se3_transformer.runtime.utils import init_distributed, seed_everything
    from se3_transformer.model import SE3TransformerPooled, Fiber
    from se3_transformer.data_loading import QM9DataModule
    import torch.distributed as dist
    import logging
    import sys

    is_distributed = init_distributed()
    local_rank = get_local_rank()
    args = PARSER.parse_args()

    logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO)

    logging.info('====== SE(3)-Transformer ======')
    logging.info('|  Inference on the test set  |')
    logging.info('===============================')

    if not args.benchmark and args.load_ckpt_path is None:
        logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate')
        sys.exit(1)

    if args.benchmark:
        logging.info('Running benchmark mode with one warmup pass')

    if args.seed is not None:
        seed_everything(args.seed)

    major_cc, minor_cc = torch.cuda.get_device_capability()

    logger = DLLogger(args.log_dir, filename=args.dllogger_name)
    datamodule = QM9DataModule(**vars(args))
    model = SE3TransformerPooled(
        fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}),
        fiber_out=Fiber({0: args.num_degrees * args.num_channels}),
        fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}),
        output_dim=1,
        tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8,  # use Tensor Cores more effectively
        **vars(args)
    )
    callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')]

    model.to(device=torch.cuda.current_device())
    if args.load_ckpt_path is not None:
        checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'})
        model.load_state_dict(checkpoint['state_dict'])

    if is_distributed:
        nproc_per_node = torch.cuda.device_count()
        affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node)
        model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)

    test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader()
    evaluate(model,
             test_dataloader,
             callbacks,
             args)

    for callback in callbacks:
        callback.on_validation_end()

    if args.benchmark:
        world_size = dist.get_world_size() if dist.is_initialized() else 1
        callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')]
        for _ in range(6):
            evaluate(model,
                     test_dataloader,
                     callbacks,
                     args)
            callbacks[0].on_epoch_end()

        callbacks[0].on_fit_end()