Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
from functools import lru_cache | |
from typing import Dict, List | |
import e3nn.o3 as o3 | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch.cuda.nvtx import range as nvtx_range | |
from se3_transformer.runtime.utils import degree_to_dim | |
def get_clebsch_gordon(J: int, d_in: int, d_out: int, device) -> Tensor: | |
""" Get the (cached) Q^{d_out,d_in}_J matrices from equation (8) """ | |
return o3.wigner_3j(J, d_in, d_out, dtype=torch.float64, device=device).permute(2, 1, 0) | |
def get_all_clebsch_gordon(max_degree: int, device) -> List[List[Tensor]]: | |
all_cb = [] | |
for d_in in range(max_degree + 1): | |
for d_out in range(max_degree + 1): | |
K_Js = [] | |
for J in range(abs(d_in - d_out), d_in + d_out + 1): | |
K_Js.append(get_clebsch_gordon(J, d_in, d_out, device)) | |
all_cb.append(K_Js) | |
return all_cb | |
def get_spherical_harmonics(relative_pos: Tensor, max_degree: int) -> List[Tensor]: | |
all_degrees = list(range(2 * max_degree + 1)) | |
with nvtx_range('spherical harmonics'): | |
sh = o3.spherical_harmonics(all_degrees, relative_pos, normalize=True) | |
return torch.split(sh, [degree_to_dim(d) for d in all_degrees], dim=1) | |
def get_basis_script(max_degree: int, | |
use_pad_trick: bool, | |
spherical_harmonics: List[Tensor], | |
clebsch_gordon: List[List[Tensor]], | |
amp: bool) -> Dict[str, Tensor]: | |
""" | |
Compute pairwise bases matrices for degrees up to max_degree | |
:param max_degree: Maximum input or output degree | |
:param use_pad_trick: Pad some of the odd dimensions for a better use of Tensor Cores | |
:param spherical_harmonics: List of computed spherical harmonics | |
:param clebsch_gordon: List of computed CB-coefficients | |
:param amp: When true, return bases in FP16 precision | |
""" | |
basis = {} | |
idx = 0 | |
# Double for loop instead of product() because of JIT script | |
for d_in in range(max_degree + 1): | |
for d_out in range(max_degree + 1): | |
key = f'{d_in},{d_out}' | |
K_Js = [] | |
for freq_idx, J in enumerate(range(abs(d_in - d_out), d_in + d_out + 1)): | |
Q_J = clebsch_gordon[idx][freq_idx] | |
K_Js.append(torch.einsum('n f, k l f -> n l k', spherical_harmonics[J].float(), Q_J.float())) | |
basis[key] = torch.stack(K_Js, 2) # Stack on second dim so order is n l f k | |
if amp: | |
basis[key] = basis[key].half() | |
if use_pad_trick: | |
basis[key] = F.pad(basis[key], (0, 1)) # Pad the k dimension, that can be sliced later | |
idx += 1 | |
return basis | |
def update_basis_with_fused(basis: Dict[str, Tensor], | |
max_degree: int, | |
use_pad_trick: bool, | |
fully_fused: bool) -> Dict[str, Tensor]: | |
""" Update the basis dict with partially and optionally fully fused bases """ | |
num_edges = basis['0,0'].shape[0] | |
device = basis['0,0'].device | |
dtype = basis['0,0'].dtype | |
sum_dim = sum([degree_to_dim(d) for d in range(max_degree + 1)]) | |
# Fused per output degree | |
for d_out in range(max_degree + 1): | |
sum_freq = sum([degree_to_dim(min(d, d_out)) for d in range(max_degree + 1)]) | |
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, degree_to_dim(d_out) + int(use_pad_trick), | |
device=device, dtype=dtype) | |
acc_d, acc_f = 0, 0 | |
for d_in in range(max_degree + 1): | |
basis_fused[:, acc_d:acc_d + degree_to_dim(d_in), acc_f:acc_f + degree_to_dim(min(d_out, d_in)), | |
:degree_to_dim(d_out)] = basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)] | |
acc_d += degree_to_dim(d_in) | |
acc_f += degree_to_dim(min(d_out, d_in)) | |
basis[f'out{d_out}_fused'] = basis_fused | |
# Fused per input degree | |
for d_in in range(max_degree + 1): | |
sum_freq = sum([degree_to_dim(min(d, d_in)) for d in range(max_degree + 1)]) | |
basis_fused = torch.zeros(num_edges, degree_to_dim(d_in), sum_freq, sum_dim, | |
device=device, dtype=dtype) | |
acc_d, acc_f = 0, 0 | |
for d_out in range(max_degree + 1): | |
basis_fused[:, :, acc_f:acc_f + degree_to_dim(min(d_out, d_in)), acc_d:acc_d + degree_to_dim(d_out)] \ | |
= basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)] | |
acc_d += degree_to_dim(d_out) | |
acc_f += degree_to_dim(min(d_out, d_in)) | |
basis[f'in{d_in}_fused'] = basis_fused | |
if fully_fused: | |
# Fully fused | |
# Double sum this way because of JIT script | |
sum_freq = sum([ | |
sum([degree_to_dim(min(d_in, d_out)) for d_in in range(max_degree + 1)]) for d_out in range(max_degree + 1) | |
]) | |
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, sum_dim, device=device, dtype=dtype) | |
acc_d, acc_f = 0, 0 | |
for d_out in range(max_degree + 1): | |
b = basis[f'out{d_out}_fused'] | |
basis_fused[:, :, acc_f:acc_f + b.shape[2], acc_d:acc_d + degree_to_dim(d_out)] = b[:, :, :, | |
:degree_to_dim(d_out)] | |
acc_f += b.shape[2] | |
acc_d += degree_to_dim(d_out) | |
basis['fully_fused'] = basis_fused | |
del basis['0,0'] # We know that the basis for l = k = 0 is filled with a constant | |
return basis | |
def get_basis(relative_pos: Tensor, | |
max_degree: int = 4, | |
compute_gradients: bool = False, | |
use_pad_trick: bool = False, | |
amp: bool = False) -> Dict[str, Tensor]: | |
with nvtx_range('spherical harmonics'): | |
spherical_harmonics = get_spherical_harmonics(relative_pos, max_degree) | |
with nvtx_range('CB coefficients'): | |
clebsch_gordon = get_all_clebsch_gordon(max_degree, relative_pos.device) | |
with torch.autograd.set_grad_enabled(compute_gradients): | |
with nvtx_range('bases'): | |
basis = get_basis_script(max_degree=max_degree, | |
use_pad_trick=use_pad_trick, | |
spherical_harmonics=spherical_harmonics, | |
clebsch_gordon=clebsch_gordon, | |
amp=amp) | |
return basis | |