GlandVergil's picture
Upload 23 files
a507bdb verified
raw
history blame
5.92 kB
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
from collections import namedtuple
from itertools import product
from typing import Dict
import torch
from torch import Tensor
from se3_transformer.runtime.utils import degree_to_dim
FiberEl = namedtuple('FiberEl', ['degree', 'channels'])
class Fiber(dict):
"""
Describes the structure of some set of features.
Features are split into types (0, 1, 2, 3, ...). A feature of type k has a dimension of 2k+1.
Type-0 features: invariant scalars
Type-1 features: equivariant 3D vectors
Type-2 features: equivariant symmetric traceless matrices
...
As inputs to a SE3 layer, there can be many features of the same types, and many features of different types.
The 'multiplicity' or 'number of channels' is the number of features of a given type.
This class puts together all the degrees and their multiplicities in order to describe
the inputs, outputs or hidden features of SE3 layers.
"""
def __init__(self, structure):
if isinstance(structure, dict):
structure = [FiberEl(int(d), int(m)) for d, m in sorted(structure.items(), key=lambda x: x[1])]
elif not isinstance(structure[0], FiberEl):
structure = list(map(lambda t: FiberEl(*t), sorted(structure, key=lambda x: x[1])))
self.structure = structure
super().__init__({d: m for d, m in self.structure})
@property
def degrees(self):
return sorted([t.degree for t in self.structure])
@property
def channels(self):
return [self[d] for d in self.degrees]
@property
def num_features(self):
""" Size of the resulting tensor if all features were concatenated together """
return sum(t.channels * degree_to_dim(t.degree) for t in self.structure)
@staticmethod
def create(num_degrees: int, num_channels: int):
""" Create a Fiber with degrees 0..num_degrees-1, all with the same multiplicity """
return Fiber([(degree, num_channels) for degree in range(num_degrees)])
@staticmethod
def from_features(feats: Dict[str, Tensor]):
""" Infer the Fiber structure from a feature dict """
structure = {}
for k, v in feats.items():
degree = int(k)
assert len(v.shape) == 3, 'Feature shape should be (N, C, 2D+1)'
assert v.shape[-1] == degree_to_dim(degree)
structure[degree] = v.shape[-2]
return Fiber(structure)
def __getitem__(self, degree: int):
""" fiber[degree] returns the multiplicity for this degree """
return dict(self.structure).get(degree, 0)
def __iter__(self):
""" Iterate over namedtuples (degree, channels) """
return iter(self.structure)
def __mul__(self, other):
"""
If other in an int, multiplies all the multiplicities by other.
If other is a fiber, returns the cartesian product.
"""
if isinstance(other, Fiber):
return product(self.structure, other.structure)
elif isinstance(other, int):
return Fiber({t.degree: t.channels * other for t in self.structure})
def __add__(self, other):
"""
If other in an int, add other to all the multiplicities.
If other is a fiber, add the multiplicities of the fibers together.
"""
if isinstance(other, Fiber):
return Fiber({t.degree: t.channels + other[t.degree] for t in self.structure})
elif isinstance(other, int):
return Fiber({t.degree: t.channels + other for t in self.structure})
def __repr__(self):
return str(self.structure)
@staticmethod
def combine_max(f1, f2):
""" Combine two fiber by taking the maximum multiplicity for each degree in both fibers """
new_dict = dict(f1.structure)
for k, m in f2.structure:
new_dict[k] = max(new_dict.get(k, 0), m)
return Fiber(list(new_dict.items()))
@staticmethod
def combine_selectively(f1, f2):
""" Combine two fiber by taking the sum of multiplicities for each degree in the first fiber """
# only use orders which occur in fiber f1
new_dict = dict(f1.structure)
for k in f1.degrees:
if k in f2.degrees:
new_dict[k] += f2[k]
return Fiber(list(new_dict.items()))
def to_attention_heads(self, tensors: Dict[str, Tensor], num_heads: int):
# dict(N, num_channels, 2d+1) -> (N, num_heads, -1)
fibers = [tensors[str(degree)].reshape(*tensors[str(degree)].shape[:-2], num_heads, -1) for degree in
self.degrees]
fibers = torch.cat(fibers, -1)
return fibers