Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
import argparse | |
import ctypes | |
import logging | |
import os | |
import random | |
from functools import wraps | |
from typing import Union, List, Dict | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from torch import Tensor | |
def aggregate_residual(feats1, feats2, method: str): | |
""" Add or concatenate two fiber features together. If degrees don't match, will use the ones of feats2. """ | |
if method in ['add', 'sum']: | |
return {k: (v + feats1[k]) if k in feats1 else v for k, v in feats2.items()} | |
elif method in ['cat', 'concat']: | |
return {k: torch.cat([v, feats1[k]], dim=1) if k in feats1 else v for k, v in feats2.items()} | |
else: | |
raise ValueError('Method must be add/sum or cat/concat') | |
def degree_to_dim(degree: int) -> int: | |
return 2 * degree + 1 | |
def unfuse_features(features: Tensor, degrees: List[int]) -> Dict[str, Tensor]: | |
return dict(zip(map(str, degrees), features.split([degree_to_dim(deg) for deg in degrees], dim=-1))) | |
def str2bool(v: Union[bool, str]) -> bool: | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
def to_cuda(x): | |
""" Try to convert a Tensor, a collection of Tensors or a DGLGraph to CUDA """ | |
if isinstance(x, Tensor): | |
return x.cuda(non_blocking=True) | |
elif isinstance(x, tuple): | |
return (to_cuda(v) for v in x) | |
elif isinstance(x, list): | |
return [to_cuda(v) for v in x] | |
elif isinstance(x, dict): | |
return {k: to_cuda(v) for k, v in x.items()} | |
else: | |
# DGLGraph or other objects | |
return x.to(device=torch.cuda.current_device()) | |
def get_local_rank() -> int: | |
return int(os.environ.get('LOCAL_RANK', 0)) | |
def init_distributed() -> bool: | |
world_size = int(os.environ.get('WORLD_SIZE', 1)) | |
distributed = world_size > 1 | |
if distributed: | |
backend = 'nccl' if torch.cuda.is_available() else 'gloo' | |
dist.init_process_group(backend=backend, init_method='env://') | |
if backend == 'nccl': | |
torch.cuda.set_device(get_local_rank()) | |
else: | |
logging.warning('Running on CPU only!') | |
assert torch.distributed.is_initialized() | |
return distributed | |
def increase_l2_fetch_granularity(): | |
# maximum fetch granularity of L2: 128 bytes | |
_libcudart = ctypes.CDLL('libcudart.so') | |
# set device limit on the current device | |
# cudaLimitMaxL2FetchGranularity = 0x05 | |
pValue = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int)) | |
_libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) | |
_libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) | |
assert pValue.contents.value == 128 | |
def seed_everything(seed): | |
seed = int(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def rank_zero_only(fn): | |
def wrapped_fn(*args, **kwargs): | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
return fn(*args, **kwargs) | |
return wrapped_fn | |
def using_tensor_cores(amp: bool) -> bool: | |
major_cc, minor_cc = torch.cuda.get_device_capability() | |
return (amp and major_cc >= 7) or major_cc >= 8 | |