Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
import pathlib | |
from abc import ABC, abstractmethod | |
from enum import Enum | |
from typing import Dict, Any, Callable, Optional | |
import dllogger | |
import torch.distributed as dist | |
import wandb | |
from dllogger import Verbosity | |
from se3_transformer.runtime.utils import rank_zero_only | |
class Logger(ABC): | |
def log_hyperparams(self, params): | |
pass | |
def log_metrics(self, metrics, step=None): | |
pass | |
def _sanitize_params(params): | |
def _sanitize(val): | |
if isinstance(val, Callable): | |
try: | |
_val = val() | |
if isinstance(_val, Callable): | |
return val.__name__ | |
return _val | |
except Exception: | |
return getattr(val, "__name__", None) | |
elif isinstance(val, pathlib.Path) or isinstance(val, Enum): | |
return str(val) | |
return val | |
return {key: _sanitize(val) for key, val in params.items()} | |
class LoggerCollection(Logger): | |
def __init__(self, loggers): | |
super().__init__() | |
self.loggers = loggers | |
def __getitem__(self, index): | |
return [logger for logger in self.loggers][index] | |
def log_metrics(self, metrics, step=None): | |
for logger in self.loggers: | |
logger.log_metrics(metrics, step) | |
def log_hyperparams(self, params): | |
for logger in self.loggers: | |
logger.log_hyperparams(params) | |
class DLLogger(Logger): | |
def __init__(self, save_dir: pathlib.Path, filename: str): | |
super().__init__() | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
save_dir.mkdir(parents=True, exist_ok=True) | |
dllogger.init( | |
backends=[dllogger.JSONStreamBackend(Verbosity.DEFAULT, str(save_dir / filename))]) | |
def log_hyperparams(self, params): | |
params = self._sanitize_params(params) | |
dllogger.log(step="PARAMETER", data=params) | |
def log_metrics(self, metrics, step=None): | |
if step is None: | |
step = tuple() | |
dllogger.log(step=step, data=metrics) | |
class WandbLogger(Logger): | |
def __init__( | |
self, | |
name: str, | |
save_dir: pathlib.Path, | |
id: Optional[str] = None, | |
project: Optional[str] = None | |
): | |
super().__init__() | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
save_dir.mkdir(parents=True, exist_ok=True) | |
self.experiment = wandb.init(name=name, | |
project=project, | |
id=id, | |
dir=str(save_dir), | |
resume='allow', | |
anonymous='must') | |
def log_hyperparams(self, params: Dict[str, Any]) -> None: | |
params = self._sanitize_params(params) | |
self.experiment.config.update(params, allow_val_change=True) | |
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: | |
if step is not None: | |
self.experiment.log({**metrics, 'epoch': step}) | |
else: | |
self.experiment.log(metrics) | |