Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
import torch | |
from se3_transformer.model import SE3Transformer | |
from se3_transformer.model.fiber import Fiber | |
from tests.utils import get_random_graph, assign_relative_pos, get_max_diff, rot | |
# Tolerances for equivariance error abs( f(x) @ R - f(x @ R) ) | |
TOL = 1e-3 | |
CHANNELS, NODES = 32, 512 | |
def _get_outputs(model, R): | |
feats0 = torch.randn(NODES, CHANNELS, 1) | |
feats1 = torch.randn(NODES, CHANNELS, 3) | |
coords = torch.randn(NODES, 3) | |
graph = get_random_graph(NODES) | |
if torch.cuda.is_available(): | |
feats0 = feats0.cuda() | |
feats1 = feats1.cuda() | |
R = R.cuda() | |
coords = coords.cuda() | |
graph = graph.to('cuda') | |
model.cuda() | |
graph1 = assign_relative_pos(graph, coords) | |
out1 = model(graph1, {'0': feats0, '1': feats1}, {}) | |
graph2 = assign_relative_pos(graph, coords @ R) | |
out2 = model(graph2, {'0': feats0, '1': feats1 @ R}, {}) | |
return out1, out2 | |
def _get_model(**kwargs): | |
return SE3Transformer( | |
num_layers=4, | |
fiber_in=Fiber.create(2, CHANNELS), | |
fiber_hidden=Fiber.create(3, CHANNELS), | |
fiber_out=Fiber.create(2, CHANNELS), | |
fiber_edge=Fiber({}), | |
num_heads=8, | |
channels_div=2, | |
**kwargs | |
) | |
def test_equivariance(): | |
model = _get_model() | |
R = rot(*torch.rand(3)) | |
if torch.cuda.is_available(): | |
R = R.cuda() | |
out1, out2 = _get_outputs(model, R) | |
assert torch.allclose(out2['0'], out1['0'], atol=TOL), \ | |
f'type-0 features should be invariant {get_max_diff(out1["0"], out2["0"])}' | |
assert torch.allclose(out2['1'], (out1['1'] @ R), atol=TOL), \ | |
f'type-1 features should be equivariant {get_max_diff(out1["1"] @ R, out2["1"])}' | |
def test_equivariance_pooled(): | |
model = _get_model(pooling='avg', return_type=1) | |
R = rot(*torch.rand(3)) | |
if torch.cuda.is_available(): | |
R = R.cuda() | |
out1, out2 = _get_outputs(model, R) | |
assert torch.allclose(out2, (out1 @ R), atol=TOL), \ | |
f'type-1 features should be equivariant {get_max_diff(out1 @ R, out2)}' | |
def test_invariance_pooled(): | |
model = _get_model(pooling='avg', return_type=0) | |
R = rot(*torch.rand(3)) | |
if torch.cuda.is_available(): | |
R = R.cuda() | |
out1, out2 = _get_outputs(model, R) | |
assert torch.allclose(out2, out1, atol=TOL), \ | |
f'type-0 features should be invariant {get_max_diff(out1, out2)}' | |