# Usage: # git clone https://github.com/RosettaCommons/RFdiffusion.git # cd RFdiffusion # docker build -f docker/Dockerfile -t rfdiffusion . # mkdir $HOME/inputs $HOME/outputs $HOME/models # bash scripts/download_models.sh $HOME/models # wget -P $HOME/inputs https://files.rcsb.org/view/5TPN.pdb # docker run -it --rm --gpus all \ # -v $HOME/models:$HOME/models \ # -v $HOME/inputs:$HOME/inputs \ # -v $HOME/outputs:$HOME/outputs \ # rfdiffusion \ # inference.output_prefix=$HOME/outputs/motifscaffolding \ # inference.model_directory_path=$HOME/models \ # inference.input_pdb=$HOME/inputs/5TPN.pdb \ # inference.num_designs=3 \ # 'contigmap.contigs=[10-40/A163-181/10-40]' FROM nvcr.io/nvidia/cuda:11.6.2-cudnn8-runtime-ubuntu20.04 COPY . /app/RFdiffusion/ RUN apt-get -q update \ && DEBIAN_FRONTEND=noninteractive apt-get install --no-install-recommends -y \ git \ python3.9 \ python3-pip \ && python3.9 -m pip install -q -U --no-cache-dir pip \ && rm -rf /var/lib/apt/lists/* \ && apt-get autoremove -y \ && apt-get clean \ && pip install -q --no-cache-dir \ dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html \ torch==1.12.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116 \ e3nn==0.3.3 \ wandb==0.12.0 \ pynvml==11.0.0 \ git+https://github.com/NVIDIA/dllogger#egg=dllogger \ decorator==5.1.0 \ hydra-core==1.3.2 \ pyrsistent==0.19.3 \ /app/RFdiffusion/env/SE3Transformer \ && pip install --no-cache-dir /app/RFdiffusion --no-deps WORKDIR /app/RFdiffusion ENV DGLBACKEND="pytorch" ENTRYPOINT ["python3.9", "scripts/run_inference.py"]