# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import torch from se3_transformer.model import SE3Transformer from se3_transformer.model.fiber import Fiber from tests.utils import get_random_graph, assign_relative_pos, get_max_diff, rot # Tolerances for equivariance error abs( f(x) @ R - f(x @ R) ) TOL = 1e-3 CHANNELS, NODES = 32, 512 def _get_outputs(model, R): feats0 = torch.randn(NODES, CHANNELS, 1) feats1 = torch.randn(NODES, CHANNELS, 3) coords = torch.randn(NODES, 3) graph = get_random_graph(NODES) if torch.cuda.is_available(): feats0 = feats0.cuda() feats1 = feats1.cuda() R = R.cuda() coords = coords.cuda() graph = graph.to('cuda') model.cuda() graph1 = assign_relative_pos(graph, coords) out1 = model(graph1, {'0': feats0, '1': feats1}, {}) graph2 = assign_relative_pos(graph, coords @ R) out2 = model(graph2, {'0': feats0, '1': feats1 @ R}, {}) return out1, out2 def _get_model(**kwargs): return SE3Transformer( num_layers=4, fiber_in=Fiber.create(2, CHANNELS), fiber_hidden=Fiber.create(3, CHANNELS), fiber_out=Fiber.create(2, CHANNELS), fiber_edge=Fiber({}), num_heads=8, channels_div=2, **kwargs ) def test_equivariance(): model = _get_model() R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2['0'], out1['0'], atol=TOL), \ f'type-0 features should be invariant {get_max_diff(out1["0"], out2["0"])}' assert torch.allclose(out2['1'], (out1['1'] @ R), atol=TOL), \ f'type-1 features should be equivariant {get_max_diff(out1["1"] @ R, out2["1"])}' def test_equivariance_pooled(): model = _get_model(pooling='avg', return_type=1) R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2, (out1 @ R), atol=TOL), \ f'type-1 features should be equivariant {get_max_diff(out1 @ R, out2)}' def test_invariance_pooled(): model = _get_model(pooling='avg', return_type=0) R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2, out1, atol=TOL), \ f'type-0 features should be invariant {get_max_diff(out1, out2)}'