File size: 13,873 Bytes
444f09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目

"""
    该文件中主要包含2个函数

    不具备多线程能力的函数:
    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

    具备多线程调用能力的函数
    2. predict_no_ui_long_connection:支持多线程
"""
import logging
import os
import time
import traceback
import json
import requests
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]

# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')

timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'

def get_full_error(chunk, stream_response):
    """
        获取完整的从Openai返回的报错
    """
    while True:
        try:
            chunk += next(stream_response)
        except:
            break
    return chunk

def decode_chunk(chunk):
    # 提前读取一些信息(用于判断异常)
    chunk_decoded = chunk.decode()
    chunkjson = None
    is_last_chunk = False
    need_to_pass = False
    if chunk_decoded.startswith('data:'):
        try:
            chunkjson = json.loads(chunk_decoded[6:])
        except:
            need_to_pass = True
            pass
    elif chunk_decoded.startswith('event:'):
        try:
            event_type = chunk_decoded.split(':')[1].strip()
            if event_type == 'content_block_stop' or event_type == 'message_stop':
                is_last_chunk = True
            elif event_type == 'content_block_start' or event_type == 'message_start':
                need_to_pass = True
                pass
        except:
            need_to_pass = True
            pass
    else:
        need_to_pass = True
        pass
    return need_to_pass, chunkjson, is_last_chunk


def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
    """
    发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
    inputs:
        是本次问询的输入
    sys_prompt:
        系统静默prompt
    llm_kwargs:
        chatGPT的内部调优参数
    history:
        是之前的对话列表
    observe_window = None:
        用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
    """
    watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
    if len(ANTHROPIC_API_KEY) == 0:
        raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
    if inputs == "":     inputs = "空空如也的输入栏"
    headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
    retry = 0


    while True:
        try:
            # make a POST request to the API endpoint, stream=False
            from .bridge_all import model_info
            endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
            response = requests.post(endpoint, headers=headers, json=message,
                                     proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
        except requests.exceptions.ReadTimeout as e:
            retry += 1
            traceback.print_exc()
            if retry > MAX_RETRY: raise TimeoutError
            if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
    stream_response = response.iter_lines()
    result = ''
    while True:
        try: chunk = next(stream_response)
        except StopIteration:
            break
        except requests.exceptions.ConnectionError:
            chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
        need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
        if chunk:
            try:
                if need_to_pass:
                    pass
                elif is_last_chunk:
                    # logging.info(f'[response] {result}')
                    break
                else:
                    if chunkjson and chunkjson['type'] == 'content_block_delta':
                        result += chunkjson['delta']['text']
                        print(chunkjson['delta']['text'], end='')
                        if observe_window is not None:
                            # 观测窗,把已经获取的数据显示出去
                            if len(observe_window) >= 1:
                                observe_window[0] += chunkjson['delta']['text']
                            # 看门狗,如果超过期限没有喂狗,则终止
                            if len(observe_window) >= 2:
                                if (time.time()-observe_window[1]) > watch_dog_patience:
                                    raise RuntimeError("用户取消了程序。")
            except Exception as e:
                chunk = get_full_error(chunk, stream_response)
                chunk_decoded = chunk.decode()
                error_msg = chunk_decoded
                print(error_msg)
                raise RuntimeError("Json解析不合常规")

    return result

def make_media_input(history,inputs,image_paths):
    for image_path in image_paths:
        inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
    return inputs

def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
    """
    发送至chatGPT,流式获取输出。
    用于基础的对话功能。
    inputs 是本次问询的输入
    top_p, temperature是chatGPT的内部调优参数
    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
    additional_fn代表点击的哪个按钮,按钮见functional.py
    """
    if inputs == "":     inputs = "空空如也的输入栏"
    if len(ANTHROPIC_API_KEY) == 0:
        chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
        return

    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    have_recent_file, image_paths = every_image_file_in_path(chatbot)
    if len(image_paths) > 20:
        chatbot.append((inputs, "图片数量超过api上限(20张)"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
        return

    if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
        if inputs == "" or inputs == "空空如也的输入栏":     inputs = "请描述给出的图片"
        system_prompt += picture_system_prompt  # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
        chatbot.append((make_media_input(history,inputs, image_paths), ""))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
    else:
        chatbot.append((inputs, ""))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面

    try:
        headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
    except RuntimeError as e:
        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
        return

    history.append(inputs); history.append("")

    retry = 0
    while True:
        try:
            # make a POST request to the API endpoint, stream=True
            from .bridge_all import model_info
            endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
            response = requests.post(endpoint, headers=headers, json=message,
                                     proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
        except requests.exceptions.ReadTimeout as e:
            retry += 1
            traceback.print_exc()
            if retry > MAX_RETRY: raise TimeoutError
            if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
    stream_response = response.iter_lines()
    gpt_replying_buffer = ""

    while True:
        try: chunk = next(stream_response)
        except StopIteration:
            break
        except requests.exceptions.ConnectionError:
            chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
        need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
        if chunk:
            try:
                if need_to_pass:
                    pass
                elif is_last_chunk:
                    log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
                    # logging.info(f'[response] {gpt_replying_buffer}')
                    break
                else:
                    if chunkjson and chunkjson['type'] == 'content_block_delta':
                        gpt_replying_buffer += chunkjson['delta']['text']
                        history[-1] = gpt_replying_buffer
                        chatbot[-1] = (history[-2], history[-1])
                        yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面

            except Exception as e:
                chunk = get_full_error(chunk, stream_response)
                chunk_decoded = chunk.decode()
                error_msg = chunk_decoded
                print(error_msg)
                raise RuntimeError("Json解析不合常规")

def multiple_picture_types(image_paths):
    """
    根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
    """
    for image_path in image_paths:
        if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
            return 'image/jpeg'
        elif image_path.endswith('.png'):
            return 'image/png'
        elif image_path.endswith('.gif'):
            return 'image/gif'
        elif image_path.endswith('.webp'):
            return 'image/webp'
    return 'image/jpeg'

def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
    """
    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
    """

    conversation_cnt = len(history) // 2

    messages = []

    if conversation_cnt:
        for index in range(0, 2*conversation_cnt, 2):
            what_i_have_asked = {}
            what_i_have_asked["role"] = "user"
            what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
            what_gpt_answer = {}
            what_gpt_answer["role"] = "assistant"
            what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
            if what_i_have_asked["content"][0]["text"] != "":
                if what_i_have_asked["content"][0]["text"] == "": continue
                if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
                messages.append(what_i_have_asked)
                messages.append(what_gpt_answer)
            else:
                messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']

    if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
        what_i_ask_now = {}
        what_i_ask_now["role"] = "user"
        what_i_ask_now["content"] = []
        for image_path in image_paths:
            what_i_ask_now["content"].append({
                "type": "image",
                "source": {
                    "type": "base64",
                    "media_type": multiple_picture_types(image_paths),
                    "data": encode_image(image_path),
                }
            })
        what_i_ask_now["content"].append({"type": "text", "text": inputs})
    else:
        what_i_ask_now = {}
        what_i_ask_now["role"] = "user"
        what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
    messages.append(what_i_ask_now)
    # 开始整理headers与message
    headers = {
        'x-api-key': ANTHROPIC_API_KEY,
        'anthropic-version': '2023-06-01',
        'content-type': 'application/json'
    }
    payload = {
        'model': llm_kwargs['llm_model'],
        'max_tokens': 4096,
        'messages': messages,
        'temperature': llm_kwargs['temperature'],
        'stream': True,
        'system': system_prompt
    }
    return headers, payload