Spaces:
Runtime error
Runtime error
File size: 9,355 Bytes
444f09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
"""
该文件中主要包含2个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection:支持多线程
"""
import os
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs:
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs:
chatGPT的内部调优参数
history:
是之前的对话列表
observe_window = None:
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
"""
from anthropic import Anthropic
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
if len(ANTHROPIC_API_KEY) == 0:
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
while True:
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# with ProxyNetworkActivate()
stream = anthropic.completions.create(
prompt=prompt,
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
temperature = llm_kwargs['temperature']
)
break
except Exception as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
result = ''
try:
for completion in stream:
result += completion.completion
if not console_slience: print(completion.completion, end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += completion.completion
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
except Exception as e:
traceback.print_exc()
return result
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT,流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
additional_fn代表点击的哪个按钮,按钮见functional.py
"""
from anthropic import Anthropic
if len(ANTHROPIC_API_KEY) == 0:
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try:
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
# with ProxyNetworkActivate()
stream = anthropic.completions.create(
prompt=prompt,
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
model=llm_kwargs['llm_model'],
stream=True,
temperature = llm_kwargs['temperature']
)
break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
for completion in stream:
try:
gpt_replying_buffer = gpt_replying_buffer + completion.completion
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
except Exception as e:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
return
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
def convert_messages_to_prompt(messages):
prompt = ""
role_map = {
"system": "Human",
"user": "Human",
"assistant": "Assistant",
}
for message in messages:
role = message["role"]
content = message["content"]
transformed_role = role_map[role]
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
prompt += "\n\nAssistant: "
return prompt
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
"""
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
prompt = convert_messages_to_prompt(messages)
return prompt
|