File size: 3,576 Bytes
444f09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
model_name = "ChatGLM"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"


from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns



# ------------------------------------------------------------------------------------------------------------------------
# πŸ”ŒπŸ’» Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM2Handle(LocalLLMHandle):

    def load_model_info(self):
        # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ
        self.model_name = model_name
        self.cmd_to_install = cmd_to_install

    def load_model_and_tokenizer(self):
        # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ
        import os, glob
        import os
        import platform
        from transformers import AutoModel, AutoTokenizer
        LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')

        if LOCAL_MODEL_QUANT == "INT4":         # INT4
            _model_name_ = "THUDM/chatglm2-6b-int4"
        elif LOCAL_MODEL_QUANT == "INT8":       # INT8
            _model_name_ = "THUDM/chatglm2-6b-int8"
        else:
            _model_name_ = "THUDM/chatglm2-6b"  # FP16

        with ProxyNetworkActivate('Download_LLM'):
            chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
            if device=='cpu':
                chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
            else:
                chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
            chatglm_model = chatglm_model.eval()

        self._model = chatglm_model
        self._tokenizer = chatglm_tokenizer
        return self._model, self._tokenizer

    def llm_stream_generator(self, **kwargs):
        # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ ε­θΏ›η¨‹ζ‰§θ‘Œ
        def adaptor(kwargs):
            query = kwargs['query']
            max_length = kwargs['max_length']
            top_p = kwargs['top_p']
            temperature = kwargs['temperature']
            history = kwargs['history']
            return query, max_length, top_p, temperature, history

        query, max_length, top_p, temperature, history = adaptor(kwargs)

        for response, history in self._model.stream_chat(self._tokenizer,
                                                         query,
                                                         history,
                                                         max_length=max_length,
                                                         top_p=top_p,
                                                         temperature=temperature,
                                                         ):
            yield response

    def try_to_import_special_deps(self, **kwargs):
        # import something that will raise error if the user does not install requirement_*.txt
        # πŸƒβ€β™‚οΈπŸƒβ€β™‚οΈπŸƒβ€β™‚οΈ δΈ»θΏ›η¨‹ζ‰§θ‘Œ
        import importlib
        # importlib.import_module('modelscope')


# ------------------------------------------------------------------------------------------------------------------------
# πŸ”ŒπŸ’» GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name)