TecGPT / request_llms /com_google.py
Gnib's picture
Upload 834 files
444f09e verified
raw
history blame
6.92 kB
# encoding: utf-8
# @Time : 2023/12/25
# @Author : Spike
# @Descr :
import json
import os
import re
import requests
from typing import List, Dict, Tuple
from toolbox import get_conf, encode_image, get_pictures_list, to_markdown_tabs
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
"""
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
第五部分 一些文件处理方法
files_filter_handler 根据type过滤文件
input_encode_handler 提取input中的文件,并解析
file_manifest_filter_html 根据type过滤文件, 并解析为html or md 文本
link_mtime_to_md 文件增加本地时间参数,避免下载到缓存文件
html_view_blank 超链接
html_local_file 本地文件取相对路径
to_markdown_tabs 文件list 转换为 md tab
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
"""
def files_filter_handler(file_list):
new_list = []
filter_ = [
"png",
"jpg",
"jpeg",
"bmp",
"svg",
"webp",
"ico",
"tif",
"tiff",
"raw",
"eps",
]
for file in file_list:
file = str(file).replace("file=", "")
if os.path.exists(file):
if str(os.path.basename(file)).split(".")[-1] in filter_:
new_list.append(file)
return new_list
def input_encode_handler(inputs, llm_kwargs):
if llm_kwargs["most_recent_uploaded"].get("path"):
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
md_encode = []
for md_path in image_paths:
type_ = os.path.splitext(md_path)[1].replace(".", "")
type_ = "jpeg" if type_ == "jpg" else type_
md_encode.append({"data": encode_image(md_path), "type": type_})
return inputs, md_encode
def file_manifest_filter_html(file_list, filter_: list = None, md_type=False):
new_list = []
if not filter_:
filter_ = [
"png",
"jpg",
"jpeg",
"bmp",
"svg",
"webp",
"ico",
"tif",
"tiff",
"raw",
"eps",
]
for file in file_list:
if str(os.path.basename(file)).split(".")[-1] in filter_:
new_list.append(html_local_img(file, md=md_type))
elif os.path.exists(file):
new_list.append(link_mtime_to_md(file))
else:
new_list.append(file)
return new_list
def link_mtime_to_md(file):
link_local = html_local_file(file)
link_name = os.path.basename(file)
a = f"[{link_name}]({link_local}?{os.path.getmtime(file)})"
return a
def html_local_file(file):
base_path = os.path.dirname(__file__) # 项目目录
if os.path.exists(str(file)):
file = f'file={file.replace(base_path, ".")}'
return file
def html_local_img(__file, layout="left", max_width=None, max_height=None, md=True):
style = ""
if max_width is not None:
style += f"max-width: {max_width};"
if max_height is not None:
style += f"max-height: {max_height};"
__file = html_local_file(__file)
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
if md:
a = f"![{__file}]({__file})"
return a
class GoogleChatInit:
def __init__(self, llm_kwargs):
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
headers, payload = self.generate_message_payload(
inputs, llm_kwargs, history, system_prompt
)
response = requests.post(
url=self.url_gemini,
headers=headers,
data=json.dumps(payload),
stream=True,
proxies=proxies,
timeout=TIMEOUT_SECONDS,
)
return response.iter_lines()
def __conversation_user(self, user_input, llm_kwargs):
what_i_have_asked = {"role": "user", "parts": []}
if "vision" not in self.url_gemini:
input_ = user_input
encode_img = []
else:
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
what_i_have_asked["parts"].append({"text": input_})
if encode_img:
for data in encode_img:
what_i_have_asked["parts"].append(
{
"inline_data": {
"mime_type": f"image/{data['type']}",
"data": data["data"],
}
}
)
return what_i_have_asked
def __conversation_history(self, history, llm_kwargs):
messages = []
conversation_cnt = len(history) // 2
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
what_gpt_answer = {
"role": "model",
"parts": [{"text": history[index + 1]}],
}
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
return messages
def generate_message_payload(
self, inputs, llm_kwargs, history, system_prompt
) -> Tuple[Dict, Dict]:
messages = [
# {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。
# {"role": "user", "parts": [{"text": ""}]},
# {"role": "model", "parts": [{"text": ""}]}
]
self.url_gemini = self.url_gemini.replace(
"%m", llm_kwargs["llm_model"]
).replace("%k", get_conf("GEMINI_API_KEY"))
header = {"Content-Type": "application/json"}
if "vision" not in self.url_gemini: # 不是vision 才处理history
messages.extend(
self.__conversation_history(history, llm_kwargs)
) # 处理 history
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
payload = {
"contents": messages,
"generationConfig": {
# "maxOutputTokens": 800,
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
"temperature": llm_kwargs.get("temperature", 1),
"topP": llm_kwargs.get("top_p", 0.8),
"topK": 10,
},
}
return header, payload
if __name__ == "__main__":
google = GoogleChatInit()
# print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
# gootle.input_encode_handle('123123[123123](./123123), ![53425](./asfafa/fff.jpg)')