Spaces:
Runtime error
Runtime error
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 | |
""" | |
该文件中主要包含2个函数 | |
不具备多线程能力的函数: | |
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
具备多线程调用能力的函数 | |
2. predict_no_ui_long_connection:支持多线程 | |
""" | |
import logging | |
import os | |
import time | |
import traceback | |
import json | |
import requests | |
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat | |
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。" | |
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"] | |
# config_private.py放自己的秘密如API和代理网址 | |
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 | |
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate | |
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \ | |
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY') | |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ | |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' | |
def get_full_error(chunk, stream_response): | |
""" | |
获取完整的从Openai返回的报错 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def decode_chunk(chunk): | |
# 提前读取一些信息(用于判断异常) | |
chunk_decoded = chunk.decode() | |
chunkjson = None | |
is_last_chunk = False | |
need_to_pass = False | |
if chunk_decoded.startswith('data:'): | |
try: | |
chunkjson = json.loads(chunk_decoded[6:]) | |
except: | |
need_to_pass = True | |
pass | |
elif chunk_decoded.startswith('event:'): | |
try: | |
event_type = chunk_decoded.split(':')[1].strip() | |
if event_type == 'content_block_stop' or event_type == 'message_stop': | |
is_last_chunk = True | |
elif event_type == 'content_block_start' or event_type == 'message_start': | |
need_to_pass = True | |
pass | |
except: | |
need_to_pass = True | |
pass | |
else: | |
need_to_pass = True | |
pass | |
return need_to_pass, chunkjson, is_last_chunk | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): | |
""" | |
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 | |
inputs: | |
是本次问询的输入 | |
sys_prompt: | |
系统静默prompt | |
llm_kwargs: | |
chatGPT的内部调优参数 | |
history: | |
是之前的对话列表 | |
observe_window = None: | |
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 | |
""" | |
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 | |
if len(ANTHROPIC_API_KEY) == 0: | |
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项") | |
if inputs == "": inputs = "空空如也的输入栏" | |
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None) | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=False | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
response = requests.post(endpoint, headers=headers, json=message, | |
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break | |
except requests.exceptions.ReadTimeout as e: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
stream_response = response.iter_lines() | |
result = '' | |
while True: | |
try: chunk = next(stream_response) | |
except StopIteration: | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk) | |
if chunk: | |
try: | |
if need_to_pass: | |
pass | |
elif is_last_chunk: | |
# logging.info(f'[response] {result}') | |
break | |
else: | |
if chunkjson and chunkjson['type'] == 'content_block_delta': | |
result += chunkjson['delta']['text'] | |
print(chunkjson['delta']['text'], end='') | |
if observe_window is not None: | |
# 观测窗,把已经获取的数据显示出去 | |
if len(observe_window) >= 1: | |
observe_window[0] += chunkjson['delta']['text'] | |
# 看门狗,如果超过期限没有喂狗,则终止 | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("用户取消了程序。") | |
except Exception as e: | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
print(error_msg) | |
raise RuntimeError("Json解析不合常规") | |
return result | |
def make_media_input(history,inputs,image_paths): | |
for image_path in image_paths: | |
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>' | |
return inputs | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
发送至chatGPT,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
if inputs == "": inputs = "空空如也的输入栏" | |
if len(ANTHROPIC_API_KEY) == 0: | |
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
return | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
have_recent_file, image_paths = every_image_file_in_path(chatbot) | |
if len(image_paths) > 20: | |
chatbot.append((inputs, "图片数量超过api上限(20张)")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") | |
return | |
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file: | |
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片" | |
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位 | |
chatbot.append((make_media_input(history,inputs, image_paths), "")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
else: | |
chatbot.append((inputs, "")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
try: | |
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths) | |
except RuntimeError as e: | |
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") | |
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 | |
return | |
history.append(inputs); history.append("") | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=True | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
response = requests.post(endpoint, headers=headers, json=message, | |
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break | |
except requests.exceptions.ReadTimeout as e: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
stream_response = response.iter_lines() | |
gpt_replying_buffer = "" | |
while True: | |
try: chunk = next(stream_response) | |
except StopIteration: | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk) | |
if chunk: | |
try: | |
if need_to_pass: | |
pass | |
elif is_last_chunk: | |
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer) | |
# logging.info(f'[response] {gpt_replying_buffer}') | |
break | |
else: | |
if chunkjson and chunkjson['type'] == 'content_block_delta': | |
gpt_replying_buffer += chunkjson['delta']['text'] | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面 | |
except Exception as e: | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
print(error_msg) | |
raise RuntimeError("Json解析不合常规") | |
def multiple_picture_types(image_paths): | |
""" | |
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg | |
""" | |
for image_path in image_paths: | |
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'): | |
return 'image/jpeg' | |
elif image_path.endswith('.png'): | |
return 'image/png' | |
elif image_path.endswith('.gif'): | |
return 'image/gif' | |
elif image_path.endswith('.webp'): | |
return 'image/webp' | |
return 'image/jpeg' | |
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths): | |
""" | |
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
""" | |
conversation_cnt = len(history) // 2 | |
messages = [] | |
if conversation_cnt: | |
for index in range(0, 2*conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}] | |
if what_i_have_asked["content"][0]["text"] != "": | |
if what_i_have_asked["content"][0]["text"] == "": continue | |
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text'] | |
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths: | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = [] | |
for image_path in image_paths: | |
what_i_ask_now["content"].append({ | |
"type": "image", | |
"source": { | |
"type": "base64", | |
"media_type": multiple_picture_types(image_paths), | |
"data": encode_image(image_path), | |
} | |
}) | |
what_i_ask_now["content"].append({"type": "text", "text": inputs}) | |
else: | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = [{"type": "text", "text": inputs}] | |
messages.append(what_i_ask_now) | |
# 开始整理headers与message | |
headers = { | |
'x-api-key': ANTHROPIC_API_KEY, | |
'anthropic-version': '2023-06-01', | |
'content-type': 'application/json' | |
} | |
payload = { | |
'model': llm_kwargs['llm_model'], | |
'max_tokens': 4096, | |
'messages': messages, | |
'temperature': llm_kwargs['temperature'], | |
'stream': True, | |
'system': system_prompt | |
} | |
return headers, payload | |