TecGPT / request_llms /bridge_moonshot.py
Gnib's picture
Upload 834 files
444f09e verified
# encoding: utf-8
# @Time : 2024/3/3
# @Author : Spike
# @Descr :
import json
import os
import time
import logging
from toolbox import get_conf, update_ui, log_chat
from toolbox import ChatBotWithCookies
import requests
class MoonShotInit:
def __init__(self):
self.llm_model = None
self.url = 'https://api.moonshot.cn/v1/chat/completions'
self.api_key = get_conf('MOONSHOT_API_KEY')
def __converter_file(self, user_input: str):
what_ask = []
for f in user_input.splitlines():
if os.path.exists(f):
files = []
if os.path.isdir(f):
file_list = os.listdir(f)
files.extend([os.path.join(f, file) for file in file_list])
else:
files.append(f)
for file in files:
if file.split('.')[-1] in ['pdf']:
with open(file, 'r') as fp:
from crazy_functions.crazy_utils import read_and_clean_pdf_text
file_content, _ = read_and_clean_pdf_text(fp)
what_ask.append({"role": "system", "content": file_content})
return what_ask
def __converter_user(self, user_input: str):
what_i_ask_now = {"role": "user", "content": user_input}
return what_i_ask_now
def __conversation_history(self, history):
conversation_cnt = len(history) // 2
messages = []
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = {
"role": "user",
"content": str(history[index])
}
what_gpt_answer = {
"role": "assistant",
"content": str(history[index + 1])
}
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
return messages
def _analysis_content(self, chuck):
chunk_decoded = chuck.decode("utf-8")
chunk_json = {}
content = ""
try:
chunk_json = json.loads(chunk_decoded[6:])
content = chunk_json['choices'][0]["delta"].get("content", "")
except:
pass
return chunk_decoded, chunk_json, content
def generate_payload(self, inputs, llm_kwargs, history, system_prompt, stream):
self.llm_model = llm_kwargs['llm_model']
llm_kwargs.update({'use-key': self.api_key})
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(self.__converter_file(inputs))
for i in history[0::2]: # 历史文件继续上传
messages.extend(self.__converter_file(i))
messages.extend(self.__conversation_history(history))
messages.append(self.__converter_user(inputs))
header = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
payload = {
"model": self.llm_model,
"messages": messages,
"temperature": llm_kwargs.get('temperature', 0.3), # 1.0,
"top_p": llm_kwargs.get('top_p', 1.0), # 1.0,
"n": llm_kwargs.get('n_choices', 1),
"stream": stream
}
return payload, header
def generate_messages(self, inputs, llm_kwargs, history, system_prompt, stream):
payload, headers = self.generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
response = requests.post(self.url, headers=headers, json=payload, stream=stream)
chunk_content = ""
gpt_bro_result = ""
for chuck in response.iter_lines():
chunk_decoded, check_json, content = self._analysis_content(chuck)
chunk_content += chunk_decoded
if content:
gpt_bro_result += content
yield content, gpt_bro_result, ''
else:
error_msg = msg_handle_error(llm_kwargs, chunk_decoded)
if error_msg:
yield error_msg, gpt_bro_result, error_msg
break
def msg_handle_error(llm_kwargs, chunk_decoded):
use_ket = llm_kwargs.get('use-key', '')
api_key_encryption = use_ket[:8] + '****' + use_ket[-5:]
openai_website = f' 请登录OpenAI查看详情 https://platform.openai.com/signup api-key: `{api_key_encryption}`'
error_msg = ''
if "does not exist" in chunk_decoded:
error_msg = f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格."
elif "Incorrect API key" in chunk_decoded:
error_msg = f"[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务." + openai_website
elif "exceeded your current quota" in chunk_decoded:
error_msg = "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website
elif "account is not active" in chunk_decoded:
error_msg = "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website
elif "associated with a deactivated account" in chunk_decoded:
error_msg = "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website
elif "API key has been deactivated" in chunk_decoded:
error_msg = "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website
elif "bad forward key" in chunk_decoded:
error_msg = "[Local Message] Bad forward key. API2D账户额度不足."
elif "Not enough point" in chunk_decoded:
error_msg = "[Local Message] Not enough point. API2D账户点数不足."
elif 'error' in str(chunk_decoded).lower():
try:
error_msg = json.dumps(json.loads(chunk_decoded[:6]), indent=4, ensure_ascii=False)
except:
error_msg = chunk_decoded
return error_msg
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
chatbot.append([inputs, ""])
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
gpt_bro_init = MoonShotInit()
history.extend([inputs, ''])
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, system_prompt, stream)
for content, gpt_bro_result, error_bro_meg in stream_response:
chatbot[-1] = [inputs, gpt_bro_result]
history[-1] = gpt_bro_result
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if error_bro_meg:
chatbot[-1] = [inputs, error_bro_meg]
history = history[:-2]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
break
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
console_slience=False):
gpt_bro_init = MoonShotInit()
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
moonshot_bro_result = ''
for content, moonshot_bro_result, error_bro_meg in stream_response:
moonshot_bro_result = moonshot_bro_result
if error_bro_meg:
if len(observe_window) >= 3:
observe_window[2] = error_bro_meg
return f'{moonshot_bro_result} 对话错误'
# 观测窗
if len(observe_window) >= 1:
observe_window[0] = moonshot_bro_result
if len(observe_window) >= 2:
if (time.time() - observe_window[1]) > watch_dog_patience:
observe_window[2] = "请求超时,程序终止。"
raise RuntimeError(f"{moonshot_bro_result} 程序终止。")
return moonshot_bro_result
if __name__ == '__main__':
moon_ai = MoonShotInit()
for g in moon_ai.generate_messages('hello', {'llm_model': 'moonshot-v1-8k'},
[], '', True):
print(g)