# encoding: utf-8 # @Time : 2023/12/21 # @Author : Spike # @Descr : import json import re import os import time from request_llms.com_google import GoogleChatInit from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY') timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): # 检查API_KEY if get_conf("GEMINI_API_KEY") == "": raise ValueError(f"请配置 GEMINI_API_KEY。") genai = GoogleChatInit() watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 gpt_replying_buffer = '' stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt) for response in stream_response: results = response.decode() match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL) error_match = re.search(r'\"message\":\s*\"(.*?)\"', results, flags=re.DOTALL) if match: try: paraphrase = json.loads('{"text": "%s"}' % match.group(1)) except: raise ValueError(f"解析GEMINI消息出错。") buffer = paraphrase['text'] gpt_replying_buffer += buffer if len(observe_window) >= 1: observe_window[0] = gpt_replying_buffer if len(observe_window) >= 2: if (time.time() - observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。") if error_match: raise RuntimeError(f'{gpt_replying_buffer} 对话错误') return gpt_replying_buffer def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None): # 检查API_KEY if get_conf("GEMINI_API_KEY") == "": yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0) return if "vision" in llm_kwargs["llm_model"]: have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot) def make_media_input(inputs, image_paths): for image_path in image_paths: inputs = inputs + f'

' return inputs if have_recent_file: inputs = make_media_input(inputs, image_paths) chatbot.append((inputs, "")) yield from update_ui(chatbot=chatbot, history=history) genai = GoogleChatInit() retry = 0 while True: try: stream_response = genai.generate_chat(inputs, llm_kwargs, history, system_prompt) break except Exception as e: retry += 1 chatbot[-1] = ((chatbot[-1][0], trimmed_format_exc())) yield from update_ui(chatbot=chatbot, history=history, msg="请求失败") # 刷新界面 return gpt_replying_buffer = "" gpt_security_policy = "" history.extend([inputs, '']) for response in stream_response: results = response.decode("utf-8") # 被这个解码给耍了。。 gpt_security_policy += results match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL) error_match = re.search(r'\"message\":\s*\"(.*)\"', results, flags=re.DOTALL) if match: try: paraphrase = json.loads('{"text": "%s"}' % match.group(1)) except: raise ValueError(f"解析GEMINI消息出错。") gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理 chatbot[-1] = (inputs, gpt_replying_buffer) history[-1] = gpt_replying_buffer yield from update_ui(chatbot=chatbot, history=history) if error_match: history = history[-2] # 错误的不纳入对话 chatbot[-1] = (inputs, gpt_replying_buffer + f"对话错误,请查看message\n\n```\n{error_match.group(1)}\n```") yield from update_ui(chatbot=chatbot, history=history) raise RuntimeError('对话错误') if not gpt_replying_buffer: history = history[-2] # 错误的不纳入对话 chatbot[-1] = (inputs, gpt_replying_buffer + f"触发了Google的安全访问策略,没有回答\n\n```\n{gpt_security_policy}\n```") yield from update_ui(chatbot=chatbot, history=history) if __name__ == '__main__': import sys llm_kwargs = {'llm_model': 'gemini-pro'} result = predict('Write long a story about a magic backpack.', llm_kwargs, llm_kwargs, []) for i in result: print(i)