GOIDA / app.py
GoidaAlignment's picture
Update app.py
74de454 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Загрузка токенизатора и модели
model_name = "GoidaAlignment/GOIDA-0.5B" # Замените на вашу модель
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
# Шаблонная функция для форматирования диалога
def apply_chat_template(chat, add_generation_prompt=True):
formatted_chat = ""
for message in chat:
role = message["role"]
content = message["content"]
if role == "user":
formatted_chat += f"User: {content}\n"
elif role == "assistant":
formatted_chat += f"Assistant: {content}\n"
if add_generation_prompt:
formatted_chat += "Assistant: "
return formatted_chat
# Функция генерации ответа
def generate_response(user_input, chat_history):
chat_history.append({"role": "user", "content": user_input})
formatted_chat = apply_chat_template(chat_history, add_generation_prompt=True)
# Токенизация
inputs = tokenizer(formatted_chat, return_tensors="pt", add_special_tokens=False)
inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
# Генерация
outputs = model.generate(
**inputs,
max_new_tokens=64,
temperature=0.7,
top_p=0.9,
do_sample=True
)
# Декодирование
decoded_output = tokenizer.decode(outputs[0][inputs["input_ids"].size(1):], skip_special_tokens=True)
chat_history.append({"role": "assistant", "content": decoded_output})
return decoded_output, chat_history
# Интерфейс Gradio
with gr.Blocks() as demo:
gr.Markdown("# Chatbot на основе модели ГОЙДАААА\nВзаимодействуйте с языковой моделью.")
chatbot = gr.Chatbot()
user_input = gr.Textbox(placeholder="Введите ваше сообщение...")
clear = gr.Button("Очистить чат")
chat_history = gr.State([]) # Состояние для хранения истории чата
user_input.submit(
generate_response,
[user_input, chat_history],
[chatbot, chat_history]
)
clear.click(lambda: ([], []), None, [chatbot, chat_history])
if __name__ == "__main__":
demo.launch()