Spaces:
Running
Running
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import ColumnTransformer | |
from sklearn.pipeline import Pipeline | |
from sklearn.ensemble import RandomForestRegressor | |
import joblib | |
# Load the dataset | |
url = "https://raw.githubusercontent.com/manishkr1754/CarDekho_Used_Car_Price_Prediction/main/notebooks/data/cardekho_dataset.csv" | |
df = pd.read_csv(url) | |
# Preprocessing | |
num_features = ['vehicle_age', 'km_driven', 'mileage', 'engine', 'max_power', 'seats'] | |
cat_features = ['brand', 'model', 'seller_type', 'fuel_type', 'transmission_type'] | |
# Define the target variable | |
X = df[num_features + cat_features] | |
y = df['selling_price'] | |
# Preprocessing pipeline | |
numeric_transformer = StandardScaler() | |
onehot_transformer = OneHotEncoder(handle_unknown='ignore') | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', numeric_transformer, num_features), | |
('cat', onehot_transformer, cat_features) | |
]) | |
# Create and train the model | |
model = Pipeline(steps=[ | |
('preprocessor', preprocessor), | |
('regressor', RandomForestRegressor(n_estimators=100, random_state=42)) | |
]) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
model.fit(X_train, y_train) | |
# Save the model | |
joblib.dump(model, 'random_forest_model.pkl') |