Spaces:
Running
on
Zero
Running
on
Zero
########################################################################################### | |
# Code based on the Hugging Face Space of Depth Anything v2 | |
# https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/app.py | |
########################################################################################### | |
import gradio as gr | |
import cv2 | |
import matplotlib | |
import numpy as np | |
import os | |
from PIL import Image | |
import spaces | |
import torch | |
import tempfile | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from Marigold.marigold import MarigoldPipeline | |
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel | |
from transformers import CLIPTextModel, CLIPTokenizer | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
#download { | |
height: 62px; | |
} | |
""" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.float32 | |
variant = None | |
checkpoint_path = "GonzaloMG/marigold-e2e-ft-normals" | |
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet") | |
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder="vae") | |
text_encoder = CLIPTextModel.from_pretrained(checkpoint_path, subfolder="text_encoder") | |
tokenizer = CLIPTokenizer.from_pretrained(checkpoint_path, subfolder="tokenizer") | |
scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder="scheduler") | |
pipe = MarigoldPipeline.from_pretrained(pretrained_model_name_or_path = checkpoint_path, | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
variant=variant, | |
torch_dtype=dtype, | |
) | |
pipe = pipe.to(DEVICE) | |
pipe.unet.eval() | |
title = "# End-to-End Fine-Tuned Marigold for Normals Estimation" | |
description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details.""" | |
def predict_normals(image, processing_res_choice): | |
with torch.no_grad(): | |
pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", normals=True, processing_res=processing_res_choice, match_input_res=True) | |
pred = pipe_out.normal_np | |
pred_colored = pipe_out.normal_colored | |
return pred, pred_colored | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown("### Normals Prediction demo") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
normals_image_slider = ImageSlider(label="Surface Normals with Slider View", elem_id='img-display-output', position=0.5) | |
with gr.Row(): | |
submit = gr.Button(value="Compute Normals") | |
processing_res_choice = gr.Radio( | |
[ | |
("Recommended (768)", 768), | |
("Native", 0), | |
], | |
label="Processing resolution", | |
value=768, | |
) | |
raw_file = gr.File(label="Raw Normals Data (.npy)", elem_id="download") | |
cmap = matplotlib.colormaps.get_cmap('Spectral_r') | |
def on_submit(image, processing_res_choice): | |
if image is None: | |
print("No image uploaded.") | |
return None | |
pil_image = Image.fromarray(image.astype('uint8')) | |
normal_npy, normal_colored = predict_normals(pil_image, processing_res_choice) | |
# Save the npy data (raw normals) | |
tmp_npy_normal = tempfile.NamedTemporaryFile(suffix='.npy', delete=False) | |
np.save(tmp_npy_normal.name, normal_npy) | |
# Save the grayscale depth map | |
# depth_gray = (depth_npy * 65535.0).astype(np.uint16) | |
# tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
# Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16") | |
# Save the colored normals map | |
tmp_colored_normal = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
normal_colored.save(tmp_colored_normal.name) | |
return [(image, normal_colored), tmp_npy_normal.name] | |
submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[normals_image_slider, raw_file]) | |
example_files = os.listdir('assets/examples') | |
example_files.sort() | |
example_files = [os.path.join('assets/examples', filename) for filename in example_files] | |
example_files = [[image, 768] for image in example_files] | |
examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[normals_image_slider, raw_file], fn=on_submit) | |
if __name__ == '__main__': | |
demo.queue().launch(share=True) |