import gradio as gr import hopsworks import joblib import pandas as pd features = ['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar', 'chlorides', 'free_sulfur_dioxide', 'total_sulfur_dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'is_white'] labels = ["Low", "Medium", "High"] project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("wine_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/wine_model.pkl") print("Model downloaded") def wine(fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, free_sulfur_dioxide, total_sulfur_dioxide, density, pH, sulphates, alcohol, white) -> str: print("Calling function") df = pd.DataFrame([[fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides, free_sulfur_dioxide, total_sulfur_dioxide, density, pH, sulphates, alcohol, white]], columns=features) print("Predicting") print(df) # 'res' is a list of predictions returned as the label. res = model.predict(df) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. # print("Res: {0}").format(res) print(res) return f"{labels[res[0]]} quality" demo = gr.Interface( fn=wine, title="Wine Quality Predictive Analytics", description="Experiment with wine characteristics to get the wine quality (low, medium, high)", allow_flagging="never", inputs=[ gr.components.Number(label='fixed acidity'), gr.components.Number(label='volatile acidity'), gr.components.Number(label='citric acid'), gr.components.Number(label='residual sugar'), gr.components.Number(label='chlorides'), gr.components.Number(label='free sulfur dioxide'), gr.components.Number(label='total sulfur dioxide'), gr.components.Number(label='density'), gr.components.Number(label='pH'), gr.components.Number(label='sulphates'), gr.components.Number(label='alcohol'), gr.components.Checkbox(label='is white'), ], outputs=gr.Text()) demo.launch(debug=True)