Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# time: 2021/10/10
|
4 |
-
# author: yangheng <yangheng@m.scnu.edu.cn>
|
5 |
-
# github: https://github.com/yangheng95
|
6 |
-
# Copyright (C) 2021. All Rights Reserved.
|
7 |
-
|
8 |
import gradio as gr
|
9 |
import pandas as pd
|
|
|
10 |
|
11 |
from pyabsa import ATEPCCheckpointManager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
aspect_extractor = ATEPCCheckpointManager.get_aspect_extractor(checkpoint='multilingual')
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
-
def inference(text):
|
17 |
result = aspect_extractor.extract_aspect(inference_source=[text],
|
18 |
pred_sentiment=True)
|
19 |
|
@@ -23,38 +49,37 @@ def inference(text):
|
|
23 |
'position': result[0]['position']
|
24 |
})
|
25 |
|
26 |
-
return result
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
-
|
59 |
-
|
60 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
from findfile import find_files
|
6 |
|
7 |
from pyabsa import ATEPCCheckpointManager
|
8 |
+
from pyabsa.functional.dataset.dataset_manager import download_datasets_from_github, ABSADatasetList
|
9 |
+
|
10 |
+
download_datasets_from_github(os.getcwd())
|
11 |
+
|
12 |
+
|
13 |
+
def get_example(dataset):
|
14 |
+
filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']
|
15 |
+
dataset_file = {'train': [], 'test': [], 'valid': []}
|
16 |
+
search_path = './'
|
17 |
+
task = 'apc_datasets'
|
18 |
+
dataset_file['test'] += find_files(search_path, [dataset, 'test', task, '.inference'], exclude_key=['.adv', '.org', '.defense', 'train.'] + filter_key_words)
|
19 |
+
|
20 |
+
for fname in dataset_file['test']:
|
21 |
+
lines = []
|
22 |
+
if isinstance(fname, str):
|
23 |
+
fname = [fname]
|
24 |
+
|
25 |
+
for f in fname:
|
26 |
+
print('loading: {}'.format(f))
|
27 |
+
fin = open(f, 'r', encoding='utf-8')
|
28 |
+
lines.extend(fin.readlines())
|
29 |
+
fin.close()
|
30 |
+
for i in range(len(lines)):
|
31 |
+
lines[i] = lines[i][:lines[i].find('!sent!')].replace('[ASP]', '')
|
32 |
+
return sorted(set(lines), key=lines.index)
|
33 |
+
|
34 |
+
|
35 |
+
dataset_dict = {dataset.name: get_example(dataset.name) for dataset in ABSADatasetList()}
|
36 |
+
aspect_extractor = ATEPCCheckpointManager.get_aspect_extractor(checkpoint='english')
|
37 |
|
|
|
38 |
|
39 |
+
def perform_inference(text, dataset):
|
40 |
+
if not text:
|
41 |
+
text = dataset_dict[dataset][random.randint(0, len(dataset_dict[dataset]))]
|
42 |
|
|
|
43 |
result = aspect_extractor.extract_aspect(inference_source=[text],
|
44 |
pred_sentiment=True)
|
45 |
|
|
|
49 |
'position': result[0]['position']
|
50 |
})
|
51 |
|
52 |
+
return result, text
|
53 |
+
|
54 |
+
|
55 |
+
demo = gr.Blocks()
|
56 |
+
|
57 |
+
with demo:
|
58 |
+
gr.Markdown("# Multilingual Aspect-based Sentiment Analysis!")
|
59 |
+
gr.Markdown("### Repo: [PyABSA](https://github.com/yangheng95/PyABSA)")
|
60 |
+
gr.Markdown("""### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
61 |
+
[![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa)
|
62 |
+
[![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa)
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in training. However, you can try longer text in self-training ")
|
66 |
+
output_dfs = []
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
input_sentence = gr.Textbox(placeholder='Leave blank to give you a random result...', label="Example:")
|
70 |
+
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)")
|
71 |
+
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ABSADatasetList()[:-1]], value='Laptop14', label="Datasets")
|
72 |
+
inference_button = gr.Button("Let's go!")
|
73 |
+
gr.Markdown("This demo support many other language as well, you can try and explore the results of other languages by yourself.")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
output_df = gr.DataFrame(label="Prediction Results:")
|
77 |
+
output_dfs.append(output_df)
|
78 |
+
|
79 |
+
inference_button.click(fn=perform_inference,
|
80 |
+
inputs=[input_sentence, dataset_ids],
|
81 |
+
outputs=[output_df, input_sentence])
|
82 |
+
|
83 |
+
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=https://huggingface.co/spaces/yangheng/Multilingual-Aspect-Based-Sentiment-Analysis)")
|
84 |
+
|
85 |
+
demo.launch(share=True)
|
|