File size: 5,008 Bytes
69f28bd
 
 
 
 
5432f01
69f28bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5432f01
69f28bd
 
 
 
 
 
 
 
 
 
 
c4bed8c
2c83425
 
5f842d6
5432f01
69f28bd
 
 
 
 
 
 
 
5432f01
 
baa6943
 
e87525e
a1f6a93
5432f01
cad5bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
70ae0a9
cad5bb0
9f56b0a
cad5bb0
 
 
 
 
 
c4bed8c
cad5bb0
 
 
5432f01
 
 
 
 
 
cad5bb0
 
 
c4bed8c
cad5bb0
 
 
 
5432f01
 
 
 
 
 
cad5bb0
 
 
5432f01
 
cad5bb0
 
9f56b0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs[0]

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    
    if 'detr' in model_name:
        
        model = DetrForObjectDetection.from_pretrained(model_name)
        
    elif 'yolos' in model_name:
    
        model = YolosForObjectDetection.from_pretrained(model_name)
    
    if url and validators.url(url):
        image = Image.open(requests.get(url, stream=True).raw)
        
    elif image_upload:
        image = image_upload
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
    
    return viz_img   
        
#examples=[['facebook/detr-resnet-50','https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg',,0.7]



title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)

"""

models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small']

options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)

demo = gr.Blocks()

with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    options
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=1,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(shape=(450,450))
                
            with gr.Row():
                urls = ["https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg"]
                example_url = gr.Dataset(components=[url_input],
                                            samples=[[url.as_posix()]
                                                     for url in urls])
            
            url_but = gr.Button('Detect')
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(450,450))
                
            with gr.Row():
                paths = sorted(pathlib.Path('images').rglob('*.JPG')
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in paths])
                
            img_but = gr.Button('Detect')
        
    
    url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
    
    
demo.launch(enable_queue=True)