Spaces:
Running
Running
app basic structure
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import xmltodict
|
6 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
7 |
+
from transformers.pipelines.question_answering import QuestionAnsweringPipeline
|
8 |
+
|
9 |
+
QA_MODEL_NAME = "ixa-ehu/SciBERT-SQuAD-QuAC"
|
10 |
+
|
11 |
+
|
12 |
+
def clean_text(text: str) -> str:
|
13 |
+
text = re.sub("\n", " ", text)
|
14 |
+
return text
|
15 |
+
|
16 |
+
|
17 |
+
def get_paper_summary(arxiv_id: str) -> str:
|
18 |
+
paper_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
|
19 |
+
response = requests.get(paper_url)
|
20 |
+
paper_dict = xmltodict.parse(response.content)["feed"]["entry"]
|
21 |
+
return clean_text(paper_dict["summary"])
|
22 |
+
|
23 |
+
|
24 |
+
def get_qa_pipeline(qa_model_name: str = QA_MODEL_NAME) -> QuestionAnsweringPipeline:
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
26 |
+
model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
27 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
28 |
+
return qa_pipeline
|
29 |
+
|
30 |
+
|
31 |
+
def get_answer(question: str, context: str) -> str:
|
32 |
+
qa_pipeline = get_qa_pipeline()
|
33 |
+
prediction = qa_pipeline(question=question, context=context)
|
34 |
+
return prediction["answer"]
|
35 |
+
|
36 |
+
|
37 |
+
demo = gr.Blocks()
|
38 |
+
|
39 |
+
|
40 |
+
with demo:
|
41 |
+
gr.Markdown("# Document QA")
|
42 |
+
|
43 |
+
# Retrieve paper
|
44 |
+
arxiv_id = gr.Textbox(
|
45 |
+
label="arXiv Paper ID", placeholder="Insert here the ID of a paper on arXiv"
|
46 |
+
)
|
47 |
+
paper_summary = gr.Textbox(label="Paper summary")
|
48 |
+
fetch_document_button = gr.Button("Get Summary")
|
49 |
+
fetch_document_button.click(
|
50 |
+
fn=get_paper_summary, inputs=arxiv_id, outputs=paper_summary
|
51 |
+
)
|
52 |
+
|
53 |
+
# QA on paper
|
54 |
+
question = gr.Textbox(label="Ask a question about the paper:")
|
55 |
+
answer = gr.Textbox("Answer:")
|
56 |
+
ask_button = gr.Button("Ask me 🤖")
|
57 |
+
ask_button.click(fn=get_answer, inputs=[question, paper_summary], outputs=answer)
|
58 |
+
|
59 |
+
|
60 |
+
demo.launch()
|