Spaces:
Runtime error
Runtime error
File size: 3,511 Bytes
db02454 e0f1d46 db02454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import io, os, base64
from PIL import Image
import gradio as gr
import shortuuid
from transformers import pipeline
text_generation_model = "pranavpsv/gpt2-genre-story-generator"
text_generation = pipeline("text-generation", text_generation_model)
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion")
def get_story(user_input, genre="sci_fi"):
prompt = f"<BOS> <{genre}> "
stories = text_generation(f"{prompt}{user_input}", max_length=32, num_return_sequences=1)
story = stories[0]["generated_text"]
story_without_prompt = story[len(prompt):]
return story_without_prompt
def text2image_latent(text, steps, width, height, images, diversity):
print(text)
results = latent(text, steps, width, height, images, diversity)
image_paths = []
for image in results[1]:
image_str = image[0]
image_str = image_str.replace("data:image/png;base64,","")
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
img = Image.open(io.BytesIO(decoded_bytes))
url = shortuuid.uuid()
temp_dir = './tmp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir, exist_ok=True)
image_path = f'{temp_dir}/{url}.png'
img.save(f'{temp_dir}/{url}.png')
image_paths.append(image_path)
return(image_paths)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
user_input = gr.inputs.Textbox(placeholder="Type your prompt to generate an image", label="Prompt - try adding increments to your prompt such as 'a painting of', 'in the style of Picasso'", default="A giant mecha robot in Rio de Janeiro, oil on canvas")
genre_input = gr.Dropdown(["superhero","action","drama","horror","thriller","sci_fi",])
generated_story = gr.Textbox()
with gr.Row():
button_generate_story = gr.Button("Generate Story")
with gr.Column():
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=50,maximum=50,minimum=1,step=1)
width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32)
height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32)
images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=4, step=1, minimum=1, maximum=4)
diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=15.0, minimum=1.0, maximum=15.0)
with gr.Column():
gallery = gr.Gallery(label="Individual images")
with gr.Row():
get_image_latent = gr.Button("Generate Image", css={"margin-top": "1em"})
with gr.Row():
gr.Markdown("<a href='https://huggingface.co/spaces/merve/GPT-2-story-gen' target='_blank'>Story generation with GPT-2</a>, and text to image by <a href='https://huggingface.co/spaces/multimodalart/latentdiffusion' target='_blank'>Latent Diffusion</a>.")
with gr.Row():
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_latent_gpt2_story)")
button_generate_story.click(get_story, inputs=[user_input, genre_input], outputs=generated_story)
get_image_latent.click(text2image_latent, inputs=[generated_story,steps,width,height,images,diversity], outputs=gallery)
demo.launch(enable_queue=False) |