import gradio as gr from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM MODELS = { "Tatar": {"model_id": "sammy786/wav2vec2-xlsr-tatar", "has_lm": False}, "Chuvash": {"model_id": "sammy786/wav2vec2-xlsr-chuvash", "has_lm": False}, "Bashkir": {"model_id": "AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt", "has_lm": True}, "Erzya": {"model_id": "DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1", "has_lm": False} } CACHED_MODELS_BY_ID = {} LANGUAGES_ENG = list(MODELS.keys()) LANGUAGES_RUS = ["Татарский", "Чувашский", "Башкирский", "Эрзянский"] RUS2ENG = {k:v for k,v in zip(LANGUAGES_RUS, LANGUAGES_ENG)} LANG2YDX = {"Tatar": 'tt', "Chuvash": "ba", "Bashkir": "cv", "Erzya": None, "English": 'en', 'Русский': 'ru' } def run(input_file, language, decoding_type, lang): language = RUS2ENG.get(language, language) model = MODELS.get(language, None) model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) if model_instance is None: model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) CACHED_MODELS_BY_ID[model["model_id"]] = model_instance if decoding_type == "LM": processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder) else: processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=None) transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] if LANG2YDX[language]: url = 'https://translate.yandex.ru/?lang=' + LANG2YDX[language] + '-' + LANG2YDX[lang] + '&text=' + transcription # ru-fr&text= if lang == "Русский": label = 'Посмотреть перевод' else: label = 'Check the translation' html = f'{label}' else: html = None return transcription, html def update_decoding(language): language = RUS2ENG.get(language, language) if MODELS[language]['has_lm']: return gr.Radio.update(visible=True) else: return gr.Radio.update(visible=False, value='Greedy') def update_interface(lang): if lang == 'Русский': languages = gr.Radio.update(label='Язык записи', choices=LANGUAGES_RUS) audio = gr.Audio.update(label='Скажите что-нибудь...') # btn = gr.Button.update(value='Расшифровать') decoding = gr.Radio.update(label='Тип декодирования') elif lang == 'English': languages = gr.Radio.update(label='Language', choices=LANGUAGES_ENG) audio = gr.Audio.update(label='Say something...') # btn = gr.Button.update(value='Transcribe') decoding = gr.Radio.update(label='Decoding type') return languages, audio, decoding with gr.Blocks() as blocks: lang = gr.Radio(label="Выберите язык интерфейса / Interface language", choices=['Русский','English']) languages = gr.Radio(label="Language", choices=LANGUAGES_RUS) audio = gr.Audio(source="microphone", type="filepath", label="Скажите что-нибудь...") decoding = gr.Radio(label="Тип декодирования", choices=["Greedy", "LM"], visible=False, type='index') btn = gr.Button('Расшифровать / Transcribe') output = gr.Textbox(show_label=False) translation = gr.HTML() languages.change(fn=update_decoding, inputs=[languages], outputs=[decoding]) lang.change(fn=update_interface, inputs=[lang], outputs=[languages, audio, decoding]) btn.click(fn=run, inputs=[audio, languages, decoding, lang], outputs=[output, translation]) blocks.launch(enable_queue=True, debug=True)