Spaces:
Runtime error
Runtime error
arjunpatel
commited on
Commit
·
61e66c3
1
Parent(s):
ef0bdc3
History up and running
Browse files- gradio_demo.py +51 -41
gradio_demo.py
CHANGED
@@ -3,6 +3,7 @@ from transformers import AutoTokenizer
|
|
3 |
from transformers import pipeline
|
4 |
from utils import format_moves
|
5 |
import pandas as pd
|
|
|
6 |
model_checkpoint = "distilgpt2"
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
@@ -13,9 +14,11 @@ generate = pipeline("text-generation",
|
|
13 |
# load in the model
|
14 |
seed_text = "This move is called "
|
15 |
import tensorflow as tf
|
|
|
16 |
tf.random.set_seed(0)
|
17 |
|
18 |
-
|
|
|
19 |
# - remove extra spaces
|
20 |
# - make sure each word is capitalized
|
21 |
# - format the moves such that it's clearer when each move is listed
|
@@ -25,61 +28,67 @@ def update_history(df, move_name, move_desc, generation, parameters):
|
|
25 |
# needs to format each move description with new lines to cut down on width
|
26 |
|
27 |
new_row = [{"Move Name": move_name,
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
return pd.concat([df, pd.DataFrame(new_row)])
|
32 |
|
|
|
33 |
def create_move(move, history):
|
34 |
generated_move = format_moves(generate(seed_text + move, num_return_sequences=1))
|
35 |
return generated_move, update_history(history, move, generated_move,
|
36 |
-
|
37 |
|
38 |
|
39 |
-
def create_greedy_search_move(move):
|
40 |
-
generated_move = generate(seed_text + move, do_sample=False)
|
41 |
-
return
|
|
|
42 |
|
43 |
|
44 |
-
def create_beam_search_move(move, num_beams
|
45 |
-
generated_move = generate(seed_text + move, num_beams=num_beams,
|
46 |
-
|
47 |
-
|
48 |
-
return
|
|
|
49 |
|
50 |
|
51 |
-
def create_sampling_search_move(move, do_sample
|
52 |
-
generated_move = generate(seed_text + move, do_sample=do_sample, temperature=
|
53 |
-
|
54 |
-
return
|
|
|
|
|
55 |
|
56 |
|
57 |
-
def create_top_search_move(move, topk
|
58 |
-
generated_move = generate(
|
59 |
seed_text + move,
|
60 |
do_sample=True,
|
61 |
num_return_sequences=1,
|
62 |
top_k=topk,
|
63 |
top_p=topp,
|
64 |
-
force_word_ids=tokenizer.encode("The user", return_tensors='tf'))
|
65 |
-
return
|
66 |
-
|
67 |
-
|
68 |
|
69 |
|
70 |
demo = gr.Blocks()
|
71 |
|
72 |
with demo:
|
73 |
gr.Markdown("<h1><center>What's that Pokemon Move?</center></h1>")
|
74 |
-
gr.Markdown(
|
|
|
75 |
gr.Markdown("Enter a two to three word Pokemon Move name of your imagination below!")
|
76 |
with gr.Tabs():
|
77 |
with gr.TabItem("Standard Generation"):
|
78 |
with gr.Row():
|
79 |
-
text_input_baseline = gr.Textbox(label
|
80 |
-
placeholder
|
81 |
-
text_output_baseline = gr.Textbox(label
|
82 |
-
placeholder=
|
83 |
text_button_baseline = gr.Button("Create my move!")
|
84 |
with gr.TabItem("Greedy Search"):
|
85 |
gr.Markdown("This tab lets you learn about using greedy search!")
|
@@ -100,14 +109,14 @@ with demo:
|
|
100 |
with gr.Row():
|
101 |
temperature = gr.Slider(minimum=0.3, maximum=4.0, value=1.0, step=0.1,
|
102 |
label="Temperature")
|
103 |
-
sample_boolean = gr.Checkbox(label
|
104 |
text_input_temp = gr.Textbox(label="Move")
|
105 |
text_output_temp = gr.Textbox(label="Move Description")
|
106 |
text_button_temp = gr.Button("Create my move!")
|
107 |
with gr.TabItem("Top K and Top P Sampling"):
|
108 |
gr.Markdown("This tab lets you learn about Top K and Top P Sampling")
|
109 |
with gr.Row():
|
110 |
-
topk = gr.Slider(minimum=10, maximum=100, value=
|
111 |
label="Top K")
|
112 |
topp = gr.Slider(minimum=0.10, maximum=0.95, value=1, step=0.05,
|
113 |
label="Top P")
|
@@ -116,16 +125,17 @@ with demo:
|
|
116 |
text_button_top = gr.Button("Create my move!")
|
117 |
with gr.Box():
|
118 |
# Displays a dataframe with the history of moves generated, with parameters
|
119 |
-
history = gr.Dataframe(headers=
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
text_button_greedy.click(create_greedy_search_move, inputs=text_input_greedy,
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
-
#Whenever any of the output boxes updates, take that output box and add it to the History dataframe
|
130 |
-
#text_output_baseline.change(update_history, inputs = [history, text_input_baseline, text_output_baseline], outputs = history)
|
131 |
demo.launch(share=True)
|
|
|
3 |
from transformers import pipeline
|
4 |
from utils import format_moves
|
5 |
import pandas as pd
|
6 |
+
|
7 |
model_checkpoint = "distilgpt2"
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
|
14 |
# load in the model
|
15 |
seed_text = "This move is called "
|
16 |
import tensorflow as tf
|
17 |
+
|
18 |
tf.random.set_seed(0)
|
19 |
|
20 |
+
|
21 |
+
# need a function to sanitize imputs
|
22 |
# - remove extra spaces
|
23 |
# - make sure each word is capitalized
|
24 |
# - format the moves such that it's clearer when each move is listed
|
|
|
28 |
# needs to format each move description with new lines to cut down on width
|
29 |
|
30 |
new_row = [{"Move Name": move_name,
|
31 |
+
"Move Description": move_desc,
|
32 |
+
"Generation Type": generation,
|
33 |
+
"Parameters": parameters}]
|
34 |
return pd.concat([df, pd.DataFrame(new_row)])
|
35 |
|
36 |
+
|
37 |
def create_move(move, history):
|
38 |
generated_move = format_moves(generate(seed_text + move, num_return_sequences=1))
|
39 |
return generated_move, update_history(history, move, generated_move,
|
40 |
+
"baseline", "None")
|
41 |
|
42 |
|
43 |
+
def create_greedy_search_move(move, history):
|
44 |
+
generated_move = format_moves(generate(seed_text + move, do_sample=False))
|
45 |
+
return generated_move, update_history(history, move, generated_move,
|
46 |
+
"greedy", "None")
|
47 |
|
48 |
|
49 |
+
def create_beam_search_move(move, num_beams, history):
|
50 |
+
generated_move = format_moves(generate(seed_text + move, num_beams=num_beams,
|
51 |
+
num_return_sequences=1,
|
52 |
+
do_sample=False, early_stopping=True))
|
53 |
+
return generated_move, update_history(history, move, generated_move,
|
54 |
+
"beam", {"num_beams": 2})
|
55 |
|
56 |
|
57 |
+
def create_sampling_search_move(move, do_sample, temperature, history):
|
58 |
+
generated_move = format_moves(generate(seed_text + move, do_sample=do_sample, temperature=float(temperature),
|
59 |
+
num_return_sequences=1, topk=0))
|
60 |
+
return generated_move, update_history(history, move, generated_move,
|
61 |
+
"temperature", {"do_sample": do_sample,
|
62 |
+
"temperature": temperature})
|
63 |
|
64 |
|
65 |
+
def create_top_search_move(move, topk, topp, history):
|
66 |
+
generated_move = format_moves(generate(
|
67 |
seed_text + move,
|
68 |
do_sample=True,
|
69 |
num_return_sequences=1,
|
70 |
top_k=topk,
|
71 |
top_p=topp,
|
72 |
+
force_word_ids=tokenizer.encode("The user", return_tensors='tf')))
|
73 |
+
return generated_move, update_history(history, move, generated_move,
|
74 |
+
"top", {"top k": topk,
|
75 |
+
"top p": topp})
|
76 |
|
77 |
|
78 |
demo = gr.Blocks()
|
79 |
|
80 |
with demo:
|
81 |
gr.Markdown("<h1><center>What's that Pokemon Move?</center></h1>")
|
82 |
+
gr.Markdown(
|
83 |
+
"This Gradio demo is a small GPT-2 model fine-tuned on a dataset of Pokemon moves! It'll generate a move description given a name.")
|
84 |
gr.Markdown("Enter a two to three word Pokemon Move name of your imagination below!")
|
85 |
with gr.Tabs():
|
86 |
with gr.TabItem("Standard Generation"):
|
87 |
with gr.Row():
|
88 |
+
text_input_baseline = gr.Textbox(label="Move",
|
89 |
+
placeholder="Type a two or three word move name here! Try \"Wonder Shield\"!")
|
90 |
+
text_output_baseline = gr.Textbox(label="Move Description",
|
91 |
+
placeholder="Leave this blank!")
|
92 |
text_button_baseline = gr.Button("Create my move!")
|
93 |
with gr.TabItem("Greedy Search"):
|
94 |
gr.Markdown("This tab lets you learn about using greedy search!")
|
|
|
109 |
with gr.Row():
|
110 |
temperature = gr.Slider(minimum=0.3, maximum=4.0, value=1.0, step=0.1,
|
111 |
label="Temperature")
|
112 |
+
sample_boolean = gr.Checkbox(label="Enable Sampling?")
|
113 |
text_input_temp = gr.Textbox(label="Move")
|
114 |
text_output_temp = gr.Textbox(label="Move Description")
|
115 |
text_button_temp = gr.Button("Create my move!")
|
116 |
with gr.TabItem("Top K and Top P Sampling"):
|
117 |
gr.Markdown("This tab lets you learn about Top K and Top P Sampling")
|
118 |
with gr.Row():
|
119 |
+
topk = gr.Slider(minimum=10, maximum=100, value=0, step=5,
|
120 |
label="Top K")
|
121 |
topp = gr.Slider(minimum=0.10, maximum=0.95, value=1, step=0.05,
|
122 |
label="Top P")
|
|
|
125 |
text_button_top = gr.Button("Create my move!")
|
126 |
with gr.Box():
|
127 |
# Displays a dataframe with the history of moves generated, with parameters
|
128 |
+
history = gr.Dataframe(headers=["Move Name", "Move Description", "Generation Type", "Parameters"])
|
129 |
+
|
130 |
+
text_button_baseline.click(create_move, inputs=[text_input_baseline, history],
|
131 |
+
outputs=[text_output_baseline, history])
|
132 |
+
text_button_greedy.click(create_greedy_search_move, inputs=[text_input_greedy, history],
|
133 |
+
outputs=[text_output_greedy, history])
|
134 |
+
text_button_temp.click(create_sampling_search_move, inputs=[text_input_temp, sample_boolean, temperature, history],
|
135 |
+
outputs=[text_output_temp, history])
|
136 |
+
text_button_beam.click(create_beam_search_move, inputs=[text_input_beam, num_beams, history],
|
137 |
+
outputs=[text_output_beam, history])
|
138 |
+
text_button_top.click(create_top_search_move, inputs=[text_input_top, topk, topp, history],
|
139 |
+
outputs=[text_output_top, history])
|
140 |
|
|
|
|
|
141 |
demo.launch(share=True)
|