File size: 7,605 Bytes
807b486
 
 
 
 
 
 
 
 
709ff7d
807b486
 
 
 
 
709ff7d
807b486
709ff7d
807b486
709ff7d
807b486
709ff7d
807b486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
from typing import Iterator

import gradio as gr

from model import run

HF_PUBLIC = os.environ.get("HF_PUBLIC", False)

DEFAULT_SYSTEM_PROMPT = "You are Mistral. You are AI-assistant, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI. You can communicate in different languages equally well."
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000

DESCRIPTION = """
# Mistral-7B Chat

πŸ’» This Space demonstrates model [Mistral-7b-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) by Mistral AI, a Mistral-chat model with 7B parameters fine-tuned for chat instructions and specialized on many tasks. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).

πŸ”Ž For more details about the Mistral family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/mistral).

πŸƒπŸ» Check out our [Playground](https://huggingface.co/spaces/osanseviero/mistral-super-fast) for a super-fast code completion demo that leverages a streaming [inference endpoint](https://huggingface.co/inference-endpoints).

"""

def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return '', message


def display_input(message: str,
                  history: list[tuple[str, str]]) -> list[tuple[str, str]]:
    history.append((message, ''))
    return history


def delete_prev_fn(
        history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ''
    return history, message or ''


def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
    try:
        first_response = next(generator)
        yield history + [(message, first_response)]
    except StopIteration:
        yield history + [(message, '')]
    for response in generator:
        yield history + [(message, response)]


def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
    generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
    for x in generator:
        pass
    return '', x


def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
    input_token_length = len(message) + len(chat_history)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value='Duplicate Space for private use',
                       elem_id='duplicate-button')

    with gr.Group():
        chatbot = gr.Chatbot(label='Playground')
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder='Hi, CodeLlama!',
                scale=10,
            )
            submit_button = gr.Button('Submit',
                                      variant='primary',
                                      scale=1,
                                      min_width=0)
    with gr.Row():
        retry_button = gr.Button('πŸ”„  Retry', variant='secondary')
        undo_button = gr.Button('↩️ Undo', variant='secondary')
        clear_button = gr.Button('πŸ—‘οΈ  Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label='βš™οΈ Advanced options', open=False):
        system_prompt = gr.Textbox(label='System prompt',
                                   value=DEFAULT_SYSTEM_PROMPT,
                                   lines=5,
                                   interactive=False)
        max_new_tokens = gr.Slider(
            label='Max new tokens',
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label='Temperature',
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.1,
        )
        top_p = gr.Slider(
            label='Top-p (nucleus sampling)',
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        )
        top_k = gr.Slider(
            label='Top-k',
            minimum=1,
            maximum=1000,
            step=1,
            value=10,
        )



    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    button_event_preprocess = submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ''),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue(max_size=32).launch(share=HF_PUBLIC, show_api=False)