Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- model/__init__.py +8 -5
- model/cfm.py +3 -3
- model/dataset.py +22 -17
- model/trainer.py +30 -17
- model/utils.py +54 -467
model/__init__.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
-
from model.cfm import CFM
|
2 |
|
3 |
-
from model.backbones.unett import UNetT
|
4 |
-
from model.backbones.dit import DiT
|
5 |
-
from model.backbones.mmdit import MMDiT
|
6 |
|
7 |
-
from model.trainer import Trainer
|
|
|
|
|
|
|
|
1 |
+
from f5_tts.model.cfm import CFM
|
2 |
|
3 |
+
from f5_tts.model.backbones.unett import UNetT
|
4 |
+
from f5_tts.model.backbones.dit import DiT
|
5 |
+
from f5_tts.model.backbones.mmdit import MMDiT
|
6 |
|
7 |
+
from f5_tts.model.trainer import Trainer
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = ["CFM", "UNetT", "DiT", "MMDiT", "Trainer"]
|
model/cfm.py
CHANGED
@@ -18,8 +18,8 @@ from torch import nn
|
|
18 |
from torch.nn.utils.rnn import pad_sequence
|
19 |
from torchdiffeq import odeint
|
20 |
|
21 |
-
from model.modules import MelSpec
|
22 |
-
from model.utils import (
|
23 |
default,
|
24 |
exists,
|
25 |
lens_to_mask,
|
@@ -193,7 +193,7 @@ class CFM(nn.Module):
|
|
193 |
y0 = (1 - t_start) * y0 + t_start * test_cond
|
194 |
steps = int(steps * (1 - t_start))
|
195 |
|
196 |
-
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
197 |
if sway_sampling_coef is not None:
|
198 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
199 |
|
|
|
18 |
from torch.nn.utils.rnn import pad_sequence
|
19 |
from torchdiffeq import odeint
|
20 |
|
21 |
+
from f5_tts.model.modules import MelSpec
|
22 |
+
from f5_tts.model.utils import (
|
23 |
default,
|
24 |
exists,
|
25 |
lens_to_mask,
|
|
|
193 |
y0 = (1 - t_start) * y0 + t_start * test_cond
|
194 |
steps = int(steps * (1 - t_start))
|
195 |
|
196 |
+
t = torch.linspace(t_start, 1, steps + 1, device=self.device, dtype=step_cond.dtype)
|
197 |
if sway_sampling_coef is not None:
|
198 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
199 |
|
model/dataset.py
CHANGED
@@ -11,8 +11,8 @@ from torch import nn
|
|
11 |
from torch.utils.data import Dataset, Sampler
|
12 |
from tqdm import tqdm
|
13 |
|
14 |
-
from model.modules import MelSpec
|
15 |
-
from model.utils import default
|
16 |
|
17 |
|
18 |
class HFDataset(Dataset):
|
@@ -127,38 +127,43 @@ class CustomDataset(Dataset):
|
|
127 |
return len(self.data)
|
128 |
|
129 |
def __getitem__(self, index):
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if self.preprocessed_mel:
|
136 |
mel_spec = torch.tensor(row["mel_spec"])
|
137 |
-
|
138 |
else:
|
139 |
audio, source_sample_rate = torchaudio.load(audio_path)
|
|
|
|
|
140 |
if audio.shape[0] > 1:
|
141 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
142 |
|
143 |
-
|
144 |
-
return self.__getitem__((index + 1) % len(self.data))
|
145 |
-
|
146 |
if source_sample_rate != self.target_sample_rate:
|
147 |
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
|
148 |
audio = resampler(audio)
|
149 |
|
|
|
150 |
mel_spec = self.mel_spectrogram(audio)
|
151 |
-
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
152 |
|
153 |
-
return
|
154 |
-
mel_spec
|
155 |
-
text
|
156 |
-
|
157 |
|
158 |
|
159 |
# Dynamic Batch Sampler
|
160 |
-
|
161 |
-
|
162 |
class DynamicBatchSampler(Sampler[list[int]]):
|
163 |
"""Extension of Sampler that will do the following:
|
164 |
1. Change the batch size (essentially number of sequences)
|
|
|
11 |
from torch.utils.data import Dataset, Sampler
|
12 |
from tqdm import tqdm
|
13 |
|
14 |
+
from f5_tts.model.modules import MelSpec
|
15 |
+
from f5_tts.model.utils import default
|
16 |
|
17 |
|
18 |
class HFDataset(Dataset):
|
|
|
127 |
return len(self.data)
|
128 |
|
129 |
def __getitem__(self, index):
|
130 |
+
while True:
|
131 |
+
row = self.data[index]
|
132 |
+
audio_path = row["audio_path"]
|
133 |
+
text = row["text"]
|
134 |
+
duration = row["duration"]
|
135 |
+
|
136 |
+
# filter by given length
|
137 |
+
if 0.3 <= duration <= 30:
|
138 |
+
break # valid
|
139 |
+
|
140 |
+
index = (index + 1) % len(self.data)
|
141 |
|
142 |
if self.preprocessed_mel:
|
143 |
mel_spec = torch.tensor(row["mel_spec"])
|
|
|
144 |
else:
|
145 |
audio, source_sample_rate = torchaudio.load(audio_path)
|
146 |
+
|
147 |
+
# make sure mono input
|
148 |
if audio.shape[0] > 1:
|
149 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
150 |
|
151 |
+
# resample if necessary
|
|
|
|
|
152 |
if source_sample_rate != self.target_sample_rate:
|
153 |
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
|
154 |
audio = resampler(audio)
|
155 |
|
156 |
+
# to mel spectrogram
|
157 |
mel_spec = self.mel_spectrogram(audio)
|
158 |
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
159 |
|
160 |
+
return {
|
161 |
+
"mel_spec": mel_spec,
|
162 |
+
"text": text,
|
163 |
+
}
|
164 |
|
165 |
|
166 |
# Dynamic Batch Sampler
|
|
|
|
|
167 |
class DynamicBatchSampler(Sampler[list[int]]):
|
168 |
"""Extension of Sampler that will do the following:
|
169 |
1. Change the batch size (essentially number of sequences)
|
model/trainer.py
CHANGED
@@ -14,9 +14,9 @@ from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
|
14 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
-
from model import CFM
|
18 |
-
from model.dataset import DynamicBatchSampler, collate_fn
|
19 |
-
from model.utils import default, exists
|
20 |
|
21 |
# trainer
|
22 |
|
@@ -47,6 +47,8 @@ class Trainer:
|
|
47 |
ema_kwargs: dict = dict(),
|
48 |
bnb_optimizer: bool = False,
|
49 |
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
|
|
|
|
50 |
):
|
51 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
52 |
|
@@ -108,7 +110,11 @@ class Trainer:
|
|
108 |
self.max_samples = max_samples
|
109 |
self.grad_accumulation_steps = grad_accumulation_steps
|
110 |
self.max_grad_norm = max_grad_norm
|
|
|
|
|
111 |
self.vocoder_name = mel_spec_type
|
|
|
|
|
112 |
|
113 |
self.noise_scheduler = noise_scheduler
|
114 |
|
@@ -148,7 +154,7 @@ class Trainer:
|
|
148 |
if (
|
149 |
not exists(self.checkpoint_path)
|
150 |
or not os.path.exists(self.checkpoint_path)
|
151 |
-
or not os.listdir(self.checkpoint_path)
|
152 |
):
|
153 |
return 0
|
154 |
|
@@ -199,7 +205,9 @@ class Trainer:
|
|
199 |
if self.log_samples:
|
200 |
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
|
201 |
|
202 |
-
vocoder = load_vocoder(
|
|
|
|
|
203 |
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
|
204 |
log_samples_path = f"{self.checkpoint_path}/samples"
|
205 |
os.makedirs(log_samples_path, exist_ok=True)
|
@@ -324,26 +332,31 @@ class Trainer:
|
|
324 |
self.save_checkpoint(global_step)
|
325 |
|
326 |
if self.log_samples and self.accelerator.is_local_main_process:
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
with torch.inference_mode():
|
332 |
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
333 |
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
334 |
-
text=
|
335 |
duration=ref_audio_len * 2,
|
336 |
steps=nfe_step,
|
337 |
cfg_strength=cfg_strength,
|
338 |
sway_sampling_coef=sway_sampling_coef,
|
339 |
)
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
if global_step % self.last_per_steps == 0:
|
349 |
self.save_checkpoint(global_step, last=True)
|
|
|
14 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
+
from f5_tts.model import CFM
|
18 |
+
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
19 |
+
from f5_tts.model.utils import default, exists
|
20 |
|
21 |
# trainer
|
22 |
|
|
|
47 |
ema_kwargs: dict = dict(),
|
48 |
bnb_optimizer: bool = False,
|
49 |
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
50 |
+
is_local_vocoder: bool = False, # use local path vocoder
|
51 |
+
local_vocoder_path: str = "", # local vocoder path
|
52 |
):
|
53 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
54 |
|
|
|
110 |
self.max_samples = max_samples
|
111 |
self.grad_accumulation_steps = grad_accumulation_steps
|
112 |
self.max_grad_norm = max_grad_norm
|
113 |
+
|
114 |
+
# mel vocoder config
|
115 |
self.vocoder_name = mel_spec_type
|
116 |
+
self.is_local_vocoder = is_local_vocoder
|
117 |
+
self.local_vocoder_path = local_vocoder_path
|
118 |
|
119 |
self.noise_scheduler = noise_scheduler
|
120 |
|
|
|
154 |
if (
|
155 |
not exists(self.checkpoint_path)
|
156 |
or not os.path.exists(self.checkpoint_path)
|
157 |
+
or not any(filename.endswith(".pt") for filename in os.listdir(self.checkpoint_path))
|
158 |
):
|
159 |
return 0
|
160 |
|
|
|
205 |
if self.log_samples:
|
206 |
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
|
207 |
|
208 |
+
vocoder = load_vocoder(
|
209 |
+
vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path
|
210 |
+
)
|
211 |
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
|
212 |
log_samples_path = f"{self.checkpoint_path}/samples"
|
213 |
os.makedirs(log_samples_path, exist_ok=True)
|
|
|
332 |
self.save_checkpoint(global_step)
|
333 |
|
334 |
if self.log_samples and self.accelerator.is_local_main_process:
|
335 |
+
ref_audio_len = mel_lengths[0]
|
336 |
+
infer_text = [
|
337 |
+
text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0]
|
338 |
+
]
|
339 |
with torch.inference_mode():
|
340 |
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
341 |
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
342 |
+
text=infer_text,
|
343 |
duration=ref_audio_len * 2,
|
344 |
steps=nfe_step,
|
345 |
cfg_strength=cfg_strength,
|
346 |
sway_sampling_coef=sway_sampling_coef,
|
347 |
)
|
348 |
+
generated = generated.to(torch.float32)
|
349 |
+
gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
|
350 |
+
ref_mel_spec = batch["mel"][0].unsqueeze(0)
|
351 |
+
if self.vocoder_name == "vocos":
|
352 |
+
gen_audio = vocoder.decode(gen_mel_spec).cpu()
|
353 |
+
ref_audio = vocoder.decode(ref_mel_spec).cpu()
|
354 |
+
elif self.vocoder_name == "bigvgan":
|
355 |
+
gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu()
|
356 |
+
ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu()
|
357 |
+
|
358 |
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio, target_sample_rate)
|
359 |
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
|
360 |
|
361 |
if global_step % self.last_per_steps == 0:
|
362 |
self.save_checkpoint(global_step, last=True)
|
model/utils.py
CHANGED
@@ -1,135 +1,116 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
4 |
-
import re
|
5 |
-
import math
|
6 |
import random
|
7 |
-
import string
|
8 |
-
from tqdm import tqdm
|
9 |
from collections import defaultdict
|
10 |
-
|
11 |
-
import matplotlib
|
12 |
-
matplotlib.use("Agg")
|
13 |
-
import matplotlib.pylab as plt
|
14 |
|
15 |
import torch
|
16 |
-
import torch.nn.functional as F
|
17 |
from torch.nn.utils.rnn import pad_sequence
|
18 |
-
import torchaudio
|
19 |
-
|
20 |
-
import einx
|
21 |
-
from einops import rearrange, reduce
|
22 |
|
23 |
import jieba
|
24 |
from pypinyin import lazy_pinyin, Style
|
25 |
|
26 |
-
from model.ecapa_tdnn import ECAPA_TDNN_SMALL
|
27 |
-
from model.modules import MelSpec
|
28 |
-
|
29 |
|
30 |
# seed everything
|
31 |
|
32 |
-
|
|
|
33 |
random.seed(seed)
|
34 |
-
os.environ[
|
35 |
torch.manual_seed(seed)
|
36 |
torch.cuda.manual_seed(seed)
|
37 |
torch.cuda.manual_seed_all(seed)
|
38 |
torch.backends.cudnn.deterministic = True
|
39 |
torch.backends.cudnn.benchmark = False
|
40 |
|
|
|
41 |
# helpers
|
42 |
|
|
|
43 |
def exists(v):
|
44 |
return v is not None
|
45 |
|
|
|
46 |
def default(v, d):
|
47 |
return v if exists(v) else d
|
48 |
|
|
|
49 |
# tensor helpers
|
50 |
|
51 |
-
def lens_to_mask(
|
52 |
-
t: int['b'],
|
53 |
-
length: int | None = None
|
54 |
-
) -> bool['b n']:
|
55 |
|
|
|
56 |
if not exists(length):
|
57 |
length = t.amax()
|
58 |
|
59 |
-
seq = torch.arange(length, device
|
60 |
-
return
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def mask_from_frac_lengths(
|
72 |
-
seq_len: int['b'],
|
73 |
-
frac_lengths: float['b']
|
74 |
-
):
|
75 |
lengths = (frac_lengths * seq_len).long()
|
76 |
max_start = seq_len - lengths
|
77 |
|
78 |
rand = torch.rand_like(frac_lengths)
|
79 |
-
start = (max_start * rand).long().clamp(min
|
80 |
end = start + lengths
|
81 |
|
82 |
return mask_from_start_end_indices(seq_len, start, end)
|
83 |
|
84 |
-
def maybe_masked_mean(
|
85 |
-
t: float['b n d'],
|
86 |
-
mask: bool['b n'] = None
|
87 |
-
) -> float['b d']:
|
88 |
|
|
|
89 |
if not exists(mask):
|
90 |
-
return t.mean(dim
|
91 |
|
92 |
-
t =
|
93 |
-
num =
|
94 |
-
den =
|
95 |
|
96 |
-
return
|
97 |
|
98 |
|
99 |
# simple utf-8 tokenizer, since paper went character based
|
100 |
-
def list_str_to_tensor(
|
101 |
-
|
102 |
-
padding_value =
|
103 |
-
) -> int['b nt']:
|
104 |
-
list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] # ByT5 style
|
105 |
-
text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True)
|
106 |
return text
|
107 |
|
|
|
108 |
# char tokenizer, based on custom dataset's extracted .txt file
|
109 |
def list_str_to_idx(
|
110 |
text: list[str] | list[list[str]],
|
111 |
vocab_char_map: dict[str, int], # {char: idx}
|
112 |
-
padding_value
|
113 |
-
) -> int[
|
114 |
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
115 |
-
text = pad_sequence(list_idx_tensors, padding_value
|
116 |
return text
|
117 |
|
118 |
|
119 |
# Get tokenizer
|
120 |
|
|
|
121 |
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
122 |
-
|
123 |
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
124 |
- "char" for char-wise tokenizer, need .txt vocab_file
|
125 |
- "byte" for utf-8 tokenizer
|
126 |
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
127 |
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
128 |
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
129 |
-
- if use "byte", set to 256 (unicode byte range)
|
130 |
-
|
131 |
if tokenizer in ["pinyin", "char"]:
|
132 |
-
|
|
|
133 |
vocab_char_map = {}
|
134 |
for i, char in enumerate(f):
|
135 |
vocab_char_map[char[:-1]] = i
|
@@ -139,8 +120,9 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
139 |
elif tokenizer == "byte":
|
140 |
vocab_char_map = None
|
141 |
vocab_size = 256
|
|
|
142 |
elif tokenizer == "custom":
|
143 |
-
with open
|
144 |
vocab_char_map = {}
|
145 |
for i, char in enumerate(f):
|
146 |
vocab_char_map[char[:-1]] = i
|
@@ -151,16 +133,19 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
151 |
|
152 |
# convert char to pinyin
|
153 |
|
154 |
-
|
|
|
155 |
final_text_list = []
|
156 |
-
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
|
157 |
-
|
|
|
|
|
158 |
for text in text_list:
|
159 |
char_list = []
|
160 |
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
161 |
text = text.translate(custom_trans)
|
162 |
for seg in jieba.cut(text):
|
163 |
-
seg_byte_len = len(bytes(seg,
|
164 |
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
165 |
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
166 |
char_list.append(" ")
|
@@ -186,413 +171,15 @@ def convert_char_to_pinyin(text_list, polyphone = True):
|
|
186 |
return final_text_list
|
187 |
|
188 |
|
189 |
-
# save spectrogram
|
190 |
-
def save_spectrogram(spectrogram, path):
|
191 |
-
plt.figure(figsize=(12, 4))
|
192 |
-
plt.imshow(spectrogram, origin='lower', aspect='auto')
|
193 |
-
plt.colorbar()
|
194 |
-
plt.savefig(path)
|
195 |
-
plt.close()
|
196 |
-
|
197 |
-
|
198 |
-
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
199 |
-
def get_seedtts_testset_metainfo(metalst):
|
200 |
-
f = open(metalst); lines = f.readlines(); f.close()
|
201 |
-
metainfo = []
|
202 |
-
for line in lines:
|
203 |
-
if len(line.strip().split('|')) == 5:
|
204 |
-
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
|
205 |
-
elif len(line.strip().split('|')) == 4:
|
206 |
-
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
|
207 |
-
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
|
208 |
-
if not os.path.isabs(prompt_wav):
|
209 |
-
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
210 |
-
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
|
211 |
-
return metainfo
|
212 |
-
|
213 |
-
|
214 |
-
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
|
215 |
-
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
|
216 |
-
f = open(metalst); lines = f.readlines(); f.close()
|
217 |
-
metainfo = []
|
218 |
-
for line in lines:
|
219 |
-
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
|
220 |
-
|
221 |
-
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
222 |
-
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
|
223 |
-
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
|
224 |
-
|
225 |
-
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
226 |
-
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
|
227 |
-
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
|
228 |
-
|
229 |
-
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
|
230 |
-
|
231 |
-
return metainfo
|
232 |
-
|
233 |
-
|
234 |
-
# padded to max length mel batch
|
235 |
-
def padded_mel_batch(ref_mels):
|
236 |
-
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
|
237 |
-
padded_ref_mels = []
|
238 |
-
for mel in ref_mels:
|
239 |
-
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
|
240 |
-
padded_ref_mels.append(padded_ref_mel)
|
241 |
-
padded_ref_mels = torch.stack(padded_ref_mels)
|
242 |
-
padded_ref_mels = rearrange(padded_ref_mels, 'b d n -> b n d')
|
243 |
-
return padded_ref_mels
|
244 |
-
|
245 |
-
|
246 |
-
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
247 |
-
|
248 |
-
def get_inference_prompt(
|
249 |
-
metainfo,
|
250 |
-
speed = 1., tokenizer = "pinyin", polyphone = True,
|
251 |
-
target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1,
|
252 |
-
use_truth_duration = False,
|
253 |
-
infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40,
|
254 |
-
):
|
255 |
-
prompts_all = []
|
256 |
-
|
257 |
-
min_tokens = min_secs * target_sample_rate // hop_length
|
258 |
-
max_tokens = max_secs * target_sample_rate // hop_length
|
259 |
-
|
260 |
-
batch_accum = [0] * num_buckets
|
261 |
-
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \
|
262 |
-
([[] for _ in range(num_buckets)] for _ in range(6))
|
263 |
-
|
264 |
-
mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length)
|
265 |
-
|
266 |
-
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
267 |
-
|
268 |
-
# Audio
|
269 |
-
ref_audio, ref_sr = torchaudio.load(prompt_wav)
|
270 |
-
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
|
271 |
-
if ref_rms < target_rms:
|
272 |
-
ref_audio = ref_audio * target_rms / ref_rms
|
273 |
-
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
|
274 |
-
if ref_sr != target_sample_rate:
|
275 |
-
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
276 |
-
ref_audio = resampler(ref_audio)
|
277 |
-
|
278 |
-
# Text
|
279 |
-
if len(prompt_text[-1].encode('utf-8')) == 1:
|
280 |
-
prompt_text = prompt_text + " "
|
281 |
-
text = [prompt_text + gt_text]
|
282 |
-
if tokenizer == "pinyin":
|
283 |
-
text_list = convert_char_to_pinyin(text, polyphone = polyphone)
|
284 |
-
else:
|
285 |
-
text_list = text
|
286 |
-
|
287 |
-
# Duration, mel frame length
|
288 |
-
ref_mel_len = ref_audio.shape[-1] // hop_length
|
289 |
-
if use_truth_duration:
|
290 |
-
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
291 |
-
if gt_sr != target_sample_rate:
|
292 |
-
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
|
293 |
-
gt_audio = resampler(gt_audio)
|
294 |
-
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
|
295 |
-
|
296 |
-
# # test vocoder resynthesis
|
297 |
-
# ref_audio = gt_audio
|
298 |
-
else:
|
299 |
-
zh_pause_punc = r"。,、;:?!"
|
300 |
-
ref_text_len = len(prompt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, prompt_text))
|
301 |
-
gen_text_len = len(gt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gt_text))
|
302 |
-
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
303 |
-
|
304 |
-
# to mel spectrogram
|
305 |
-
ref_mel = mel_spectrogram(ref_audio)
|
306 |
-
ref_mel = rearrange(ref_mel, '1 d n -> d n')
|
307 |
-
|
308 |
-
# deal with batch
|
309 |
-
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
310 |
-
assert min_tokens <= total_mel_len <= max_tokens, \
|
311 |
-
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
312 |
-
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
313 |
-
|
314 |
-
utts[bucket_i].append(utt)
|
315 |
-
ref_rms_list[bucket_i].append(ref_rms)
|
316 |
-
ref_mels[bucket_i].append(ref_mel)
|
317 |
-
ref_mel_lens[bucket_i].append(ref_mel_len)
|
318 |
-
total_mel_lens[bucket_i].append(total_mel_len)
|
319 |
-
final_text_list[bucket_i].extend(text_list)
|
320 |
-
|
321 |
-
batch_accum[bucket_i] += total_mel_len
|
322 |
-
|
323 |
-
if batch_accum[bucket_i] >= infer_batch_size:
|
324 |
-
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
|
325 |
-
prompts_all.append((
|
326 |
-
utts[bucket_i],
|
327 |
-
ref_rms_list[bucket_i],
|
328 |
-
padded_mel_batch(ref_mels[bucket_i]),
|
329 |
-
ref_mel_lens[bucket_i],
|
330 |
-
total_mel_lens[bucket_i],
|
331 |
-
final_text_list[bucket_i]
|
332 |
-
))
|
333 |
-
batch_accum[bucket_i] = 0
|
334 |
-
utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], []
|
335 |
-
|
336 |
-
# add residual
|
337 |
-
for bucket_i, bucket_frames in enumerate(batch_accum):
|
338 |
-
if bucket_frames > 0:
|
339 |
-
prompts_all.append((
|
340 |
-
utts[bucket_i],
|
341 |
-
ref_rms_list[bucket_i],
|
342 |
-
padded_mel_batch(ref_mels[bucket_i]),
|
343 |
-
ref_mel_lens[bucket_i],
|
344 |
-
total_mel_lens[bucket_i],
|
345 |
-
final_text_list[bucket_i]
|
346 |
-
))
|
347 |
-
# not only leave easy work for last workers
|
348 |
-
random.seed(666)
|
349 |
-
random.shuffle(prompts_all)
|
350 |
-
|
351 |
-
return prompts_all
|
352 |
-
|
353 |
-
|
354 |
-
# get wav_res_ref_text of seed-tts test metalst
|
355 |
-
# https://github.com/BytedanceSpeech/seed-tts-eval
|
356 |
-
|
357 |
-
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
|
358 |
-
f = open(metalst)
|
359 |
-
lines = f.readlines()
|
360 |
-
f.close()
|
361 |
-
|
362 |
-
test_set_ = []
|
363 |
-
for line in tqdm(lines):
|
364 |
-
if len(line.strip().split('|')) == 5:
|
365 |
-
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
|
366 |
-
elif len(line.strip().split('|')) == 4:
|
367 |
-
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
|
368 |
-
|
369 |
-
if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')):
|
370 |
-
continue
|
371 |
-
gen_wav = os.path.join(gen_wav_dir, utt + '.wav')
|
372 |
-
if not os.path.isabs(prompt_wav):
|
373 |
-
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
374 |
-
|
375 |
-
test_set_.append((gen_wav, prompt_wav, gt_text))
|
376 |
-
|
377 |
-
num_jobs = len(gpus)
|
378 |
-
if num_jobs == 1:
|
379 |
-
return [(gpus[0], test_set_)]
|
380 |
-
|
381 |
-
wav_per_job = len(test_set_) // num_jobs + 1
|
382 |
-
test_set = []
|
383 |
-
for i in range(num_jobs):
|
384 |
-
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
|
385 |
-
|
386 |
-
return test_set
|
387 |
-
|
388 |
-
|
389 |
-
# get librispeech test-clean cross sentence test
|
390 |
-
|
391 |
-
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False):
|
392 |
-
f = open(metalst)
|
393 |
-
lines = f.readlines()
|
394 |
-
f.close()
|
395 |
-
|
396 |
-
test_set_ = []
|
397 |
-
for line in tqdm(lines):
|
398 |
-
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
|
399 |
-
|
400 |
-
if eval_ground_truth:
|
401 |
-
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
|
402 |
-
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
|
403 |
-
else:
|
404 |
-
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')):
|
405 |
-
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
|
406 |
-
gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav')
|
407 |
-
|
408 |
-
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
|
409 |
-
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
|
410 |
-
|
411 |
-
test_set_.append((gen_wav, ref_wav, gen_txt))
|
412 |
-
|
413 |
-
num_jobs = len(gpus)
|
414 |
-
if num_jobs == 1:
|
415 |
-
return [(gpus[0], test_set_)]
|
416 |
-
|
417 |
-
wav_per_job = len(test_set_) // num_jobs + 1
|
418 |
-
test_set = []
|
419 |
-
for i in range(num_jobs):
|
420 |
-
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
|
421 |
-
|
422 |
-
return test_set
|
423 |
-
|
424 |
-
|
425 |
-
# load asr model
|
426 |
-
|
427 |
-
def load_asr_model(lang, ckpt_dir = ""):
|
428 |
-
if lang == "zh":
|
429 |
-
from funasr import AutoModel
|
430 |
-
model = AutoModel(
|
431 |
-
model = os.path.join(ckpt_dir, "paraformer-zh"),
|
432 |
-
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
|
433 |
-
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
|
434 |
-
# spk_model = os.path.join(ckpt_dir, "cam++"),
|
435 |
-
disable_update=True,
|
436 |
-
) # following seed-tts setting
|
437 |
-
elif lang == "en":
|
438 |
-
from faster_whisper import WhisperModel
|
439 |
-
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
|
440 |
-
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
441 |
-
return model
|
442 |
-
|
443 |
-
|
444 |
-
# WER Evaluation, the way Seed-TTS does
|
445 |
-
|
446 |
-
def run_asr_wer(args):
|
447 |
-
rank, lang, test_set, ckpt_dir = args
|
448 |
-
|
449 |
-
if lang == "zh":
|
450 |
-
import zhconv
|
451 |
-
torch.cuda.set_device(rank)
|
452 |
-
elif lang == "en":
|
453 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
|
454 |
-
else:
|
455 |
-
raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.")
|
456 |
-
|
457 |
-
asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir)
|
458 |
-
|
459 |
-
from zhon.hanzi import punctuation
|
460 |
-
punctuation_all = punctuation + string.punctuation
|
461 |
-
wers = []
|
462 |
-
|
463 |
-
from jiwer import compute_measures
|
464 |
-
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
465 |
-
if lang == "zh":
|
466 |
-
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
|
467 |
-
hypo = res[0]["text"]
|
468 |
-
hypo = zhconv.convert(hypo, 'zh-cn')
|
469 |
-
elif lang == "en":
|
470 |
-
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
|
471 |
-
hypo = ''
|
472 |
-
for segment in segments:
|
473 |
-
hypo = hypo + ' ' + segment.text
|
474 |
-
|
475 |
-
# raw_truth = truth
|
476 |
-
# raw_hypo = hypo
|
477 |
-
|
478 |
-
for x in punctuation_all:
|
479 |
-
truth = truth.replace(x, '')
|
480 |
-
hypo = hypo.replace(x, '')
|
481 |
-
|
482 |
-
truth = truth.replace(' ', ' ')
|
483 |
-
hypo = hypo.replace(' ', ' ')
|
484 |
-
|
485 |
-
if lang == "zh":
|
486 |
-
truth = " ".join([x for x in truth])
|
487 |
-
hypo = " ".join([x for x in hypo])
|
488 |
-
elif lang == "en":
|
489 |
-
truth = truth.lower()
|
490 |
-
hypo = hypo.lower()
|
491 |
-
|
492 |
-
measures = compute_measures(truth, hypo)
|
493 |
-
wer = measures["wer"]
|
494 |
-
|
495 |
-
# ref_list = truth.split(" ")
|
496 |
-
# subs = measures["substitutions"] / len(ref_list)
|
497 |
-
# dele = measures["deletions"] / len(ref_list)
|
498 |
-
# inse = measures["insertions"] / len(ref_list)
|
499 |
-
|
500 |
-
wers.append(wer)
|
501 |
-
|
502 |
-
return wers
|
503 |
-
|
504 |
-
|
505 |
-
# SIM Evaluation
|
506 |
-
|
507 |
-
def run_sim(args):
|
508 |
-
rank, test_set, ckpt_dir = args
|
509 |
-
device = f"cuda:{rank}"
|
510 |
-
|
511 |
-
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None)
|
512 |
-
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
|
513 |
-
model.load_state_dict(state_dict['model'], strict=False)
|
514 |
-
|
515 |
-
use_gpu=True if torch.cuda.is_available() else False
|
516 |
-
if use_gpu:
|
517 |
-
model = model.cuda(device)
|
518 |
-
model.eval()
|
519 |
-
|
520 |
-
sim_list = []
|
521 |
-
for wav1, wav2, truth in tqdm(test_set):
|
522 |
-
|
523 |
-
wav1, sr1 = torchaudio.load(wav1)
|
524 |
-
wav2, sr2 = torchaudio.load(wav2)
|
525 |
-
|
526 |
-
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
527 |
-
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
528 |
-
wav1 = resample1(wav1)
|
529 |
-
wav2 = resample2(wav2)
|
530 |
-
|
531 |
-
if use_gpu:
|
532 |
-
wav1 = wav1.cuda(device)
|
533 |
-
wav2 = wav2.cuda(device)
|
534 |
-
with torch.no_grad():
|
535 |
-
emb1 = model(wav1)
|
536 |
-
emb2 = model(wav2)
|
537 |
-
|
538 |
-
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
539 |
-
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
540 |
-
sim_list.append(sim)
|
541 |
-
|
542 |
-
return sim_list
|
543 |
-
|
544 |
-
|
545 |
# filter func for dirty data with many repetitions
|
546 |
|
547 |
-
|
|
|
548 |
pattern_count = defaultdict(int)
|
549 |
for i in range(len(text) - length + 1):
|
550 |
-
pattern = text[i:i + length]
|
551 |
pattern_count[pattern] += 1
|
552 |
for pattern, count in pattern_count.items():
|
553 |
if count > tolerance:
|
554 |
return True
|
555 |
return False
|
556 |
-
|
557 |
-
|
558 |
-
# load model checkpoint for inference
|
559 |
-
|
560 |
-
def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True):
|
561 |
-
if dtype is None:
|
562 |
-
dtype = (
|
563 |
-
torch.float16 if "cuda" in device and torch.cuda.get_device_properties(device).major >= 6 else torch.float32
|
564 |
-
)
|
565 |
-
model = model.to(dtype)
|
566 |
-
|
567 |
-
ckpt_type = ckpt_path.split(".")[-1]
|
568 |
-
if ckpt_type == "safetensors":
|
569 |
-
from safetensors.torch import load_file
|
570 |
-
|
571 |
-
checkpoint = load_file(ckpt_path, device=device)
|
572 |
-
else:
|
573 |
-
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
574 |
-
|
575 |
-
if use_ema:
|
576 |
-
if ckpt_type == "safetensors":
|
577 |
-
checkpoint = {"ema_model_state_dict": checkpoint}
|
578 |
-
checkpoint["model_state_dict"] = {
|
579 |
-
k.replace("ema_model.", ""): v
|
580 |
-
for k, v in checkpoint["ema_model_state_dict"].items()
|
581 |
-
if k not in ["initted", "step"]
|
582 |
-
}
|
583 |
-
|
584 |
-
# patch for backward compatibility, 305e3ea
|
585 |
-
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
|
586 |
-
if key in checkpoint["model_state_dict"]:
|
587 |
-
del checkpoint["model_state_dict"][key]
|
588 |
-
|
589 |
-
model.load_state_dict(checkpoint["model_state_dict"])
|
590 |
-
else:
|
591 |
-
if ckpt_type == "safetensors":
|
592 |
-
checkpoint = {"model_state_dict": checkpoint}
|
593 |
-
model.load_state_dict(checkpoint["model_state_dict"])
|
594 |
-
|
595 |
-
del checkpoint
|
596 |
-
torch.cuda.empty_cache()
|
597 |
-
|
598 |
-
return model.to(device)
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
|
|
|
|
4 |
import random
|
|
|
|
|
5 |
from collections import defaultdict
|
6 |
+
from importlib.resources import files
|
|
|
|
|
|
|
7 |
|
8 |
import torch
|
|
|
9 |
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
|
|
|
10 |
|
11 |
import jieba
|
12 |
from pypinyin import lazy_pinyin, Style
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
# seed everything
|
16 |
|
17 |
+
|
18 |
+
def seed_everything(seed=0):
|
19 |
random.seed(seed)
|
20 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
21 |
torch.manual_seed(seed)
|
22 |
torch.cuda.manual_seed(seed)
|
23 |
torch.cuda.manual_seed_all(seed)
|
24 |
torch.backends.cudnn.deterministic = True
|
25 |
torch.backends.cudnn.benchmark = False
|
26 |
|
27 |
+
|
28 |
# helpers
|
29 |
|
30 |
+
|
31 |
def exists(v):
|
32 |
return v is not None
|
33 |
|
34 |
+
|
35 |
def default(v, d):
|
36 |
return v if exists(v) else d
|
37 |
|
38 |
+
|
39 |
# tensor helpers
|
40 |
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
|
43 |
if not exists(length):
|
44 |
length = t.amax()
|
45 |
|
46 |
+
seq = torch.arange(length, device=t.device)
|
47 |
+
return seq[None, :] < t[:, None]
|
48 |
+
|
49 |
+
|
50 |
+
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
51 |
+
max_seq_len = seq_len.max().item()
|
52 |
+
seq = torch.arange(max_seq_len, device=start.device).long()
|
53 |
+
start_mask = seq[None, :] >= start[:, None]
|
54 |
+
end_mask = seq[None, :] < end[:, None]
|
55 |
+
return start_mask & end_mask
|
56 |
+
|
57 |
+
|
58 |
+
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
|
|
|
|
|
|
59 |
lengths = (frac_lengths * seq_len).long()
|
60 |
max_start = seq_len - lengths
|
61 |
|
62 |
rand = torch.rand_like(frac_lengths)
|
63 |
+
start = (max_start * rand).long().clamp(min=0)
|
64 |
end = start + lengths
|
65 |
|
66 |
return mask_from_start_end_indices(seq_len, start, end)
|
67 |
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
70 |
if not exists(mask):
|
71 |
+
return t.mean(dim=1)
|
72 |
|
73 |
+
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
74 |
+
num = t.sum(dim=1)
|
75 |
+
den = mask.float().sum(dim=1)
|
76 |
|
77 |
+
return num / den.clamp(min=1.0)
|
78 |
|
79 |
|
80 |
# simple utf-8 tokenizer, since paper went character based
|
81 |
+
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
82 |
+
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
83 |
+
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
|
|
|
|
|
|
84 |
return text
|
85 |
|
86 |
+
|
87 |
# char tokenizer, based on custom dataset's extracted .txt file
|
88 |
def list_str_to_idx(
|
89 |
text: list[str] | list[list[str]],
|
90 |
vocab_char_map: dict[str, int], # {char: idx}
|
91 |
+
padding_value=-1,
|
92 |
+
) -> int["b nt"]: # noqa: F722
|
93 |
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
94 |
+
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
95 |
return text
|
96 |
|
97 |
|
98 |
# Get tokenizer
|
99 |
|
100 |
+
|
101 |
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
102 |
+
"""
|
103 |
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
104 |
- "char" for char-wise tokenizer, need .txt vocab_file
|
105 |
- "byte" for utf-8 tokenizer
|
106 |
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
107 |
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
108 |
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
109 |
+
- if use "byte", set to 256 (unicode byte range)
|
110 |
+
"""
|
111 |
if tokenizer in ["pinyin", "char"]:
|
112 |
+
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
113 |
+
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
vocab_char_map = {}
|
115 |
for i, char in enumerate(f):
|
116 |
vocab_char_map[char[:-1]] = i
|
|
|
120 |
elif tokenizer == "byte":
|
121 |
vocab_char_map = None
|
122 |
vocab_size = 256
|
123 |
+
|
124 |
elif tokenizer == "custom":
|
125 |
+
with open(dataset_name, "r", encoding="utf-8") as f:
|
126 |
vocab_char_map = {}
|
127 |
for i, char in enumerate(f):
|
128 |
vocab_char_map[char[:-1]] = i
|
|
|
133 |
|
134 |
# convert char to pinyin
|
135 |
|
136 |
+
|
137 |
+
def convert_char_to_pinyin(text_list, polyphone=True):
|
138 |
final_text_list = []
|
139 |
+
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
|
140 |
+
{"“": '"', "”": '"', "‘": "'", "’": "'"}
|
141 |
+
) # in case librispeech (orig no-pc) test-clean
|
142 |
+
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
|
143 |
for text in text_list:
|
144 |
char_list = []
|
145 |
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
146 |
text = text.translate(custom_trans)
|
147 |
for seg in jieba.cut(text):
|
148 |
+
seg_byte_len = len(bytes(seg, "UTF-8"))
|
149 |
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
150 |
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
151 |
char_list.append(" ")
|
|
|
171 |
return final_text_list
|
172 |
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
# filter func for dirty data with many repetitions
|
175 |
|
176 |
+
|
177 |
+
def repetition_found(text, length=2, tolerance=10):
|
178 |
pattern_count = defaultdict(int)
|
179 |
for i in range(len(text) - length + 1):
|
180 |
+
pattern = text[i : i + length]
|
181 |
pattern_count[pattern] += 1
|
182 |
for pattern, count in pattern_count.items():
|
183 |
if count > tolerance:
|
184 |
return True
|
185 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|