Delete model/trainer.py
Browse files- model/trainer.py +0 -250
model/trainer.py
DELETED
@@ -1,250 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import os
|
4 |
-
import gc
|
5 |
-
from tqdm import tqdm
|
6 |
-
import wandb
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from torch.optim import AdamW
|
10 |
-
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
11 |
-
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
12 |
-
|
13 |
-
from einops import rearrange
|
14 |
-
|
15 |
-
from accelerate import Accelerator
|
16 |
-
from accelerate.utils import DistributedDataParallelKwargs
|
17 |
-
|
18 |
-
from ema_pytorch import EMA
|
19 |
-
|
20 |
-
from model import CFM
|
21 |
-
from model.utils import exists, default
|
22 |
-
from model.dataset import DynamicBatchSampler, collate_fn
|
23 |
-
|
24 |
-
|
25 |
-
# trainer
|
26 |
-
|
27 |
-
class Trainer:
|
28 |
-
def __init__(
|
29 |
-
self,
|
30 |
-
model: CFM,
|
31 |
-
epochs,
|
32 |
-
learning_rate,
|
33 |
-
num_warmup_updates = 20000,
|
34 |
-
save_per_updates = 1000,
|
35 |
-
checkpoint_path = None,
|
36 |
-
batch_size = 32,
|
37 |
-
batch_size_type: str = "sample",
|
38 |
-
max_samples = 32,
|
39 |
-
grad_accumulation_steps = 1,
|
40 |
-
max_grad_norm = 1.0,
|
41 |
-
noise_scheduler: str | None = None,
|
42 |
-
duration_predictor: torch.nn.Module | None = None,
|
43 |
-
wandb_project = "test_e2-tts",
|
44 |
-
wandb_run_name = "test_run",
|
45 |
-
wandb_resume_id: str = None,
|
46 |
-
last_per_steps = None,
|
47 |
-
accelerate_kwargs: dict = dict(),
|
48 |
-
ema_kwargs: dict = dict()
|
49 |
-
):
|
50 |
-
|
51 |
-
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True)
|
52 |
-
|
53 |
-
self.accelerator = Accelerator(
|
54 |
-
log_with = "wandb",
|
55 |
-
kwargs_handlers = [ddp_kwargs],
|
56 |
-
gradient_accumulation_steps = grad_accumulation_steps,
|
57 |
-
**accelerate_kwargs
|
58 |
-
)
|
59 |
-
|
60 |
-
if exists(wandb_resume_id):
|
61 |
-
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}}
|
62 |
-
else:
|
63 |
-
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}}
|
64 |
-
self.accelerator.init_trackers(
|
65 |
-
project_name = wandb_project,
|
66 |
-
init_kwargs=init_kwargs,
|
67 |
-
config={"epochs": epochs,
|
68 |
-
"learning_rate": learning_rate,
|
69 |
-
"num_warmup_updates": num_warmup_updates,
|
70 |
-
"batch_size": batch_size,
|
71 |
-
"batch_size_type": batch_size_type,
|
72 |
-
"max_samples": max_samples,
|
73 |
-
"grad_accumulation_steps": grad_accumulation_steps,
|
74 |
-
"max_grad_norm": max_grad_norm,
|
75 |
-
"gpus": self.accelerator.num_processes,
|
76 |
-
"noise_scheduler": noise_scheduler}
|
77 |
-
)
|
78 |
-
|
79 |
-
self.model = model
|
80 |
-
|
81 |
-
if self.is_main:
|
82 |
-
self.ema_model = EMA(
|
83 |
-
model,
|
84 |
-
include_online_model = False,
|
85 |
-
**ema_kwargs
|
86 |
-
)
|
87 |
-
|
88 |
-
self.ema_model.to(self.accelerator.device)
|
89 |
-
|
90 |
-
self.epochs = epochs
|
91 |
-
self.num_warmup_updates = num_warmup_updates
|
92 |
-
self.save_per_updates = save_per_updates
|
93 |
-
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
|
94 |
-
self.checkpoint_path = default(checkpoint_path, 'ckpts/test_e2-tts')
|
95 |
-
|
96 |
-
self.batch_size = batch_size
|
97 |
-
self.batch_size_type = batch_size_type
|
98 |
-
self.max_samples = max_samples
|
99 |
-
self.grad_accumulation_steps = grad_accumulation_steps
|
100 |
-
self.max_grad_norm = max_grad_norm
|
101 |
-
|
102 |
-
self.noise_scheduler = noise_scheduler
|
103 |
-
|
104 |
-
self.duration_predictor = duration_predictor
|
105 |
-
|
106 |
-
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
|
107 |
-
self.model, self.optimizer = self.accelerator.prepare(
|
108 |
-
self.model, self.optimizer
|
109 |
-
)
|
110 |
-
|
111 |
-
@property
|
112 |
-
def is_main(self):
|
113 |
-
return self.accelerator.is_main_process
|
114 |
-
|
115 |
-
def save_checkpoint(self, step, last=False):
|
116 |
-
self.accelerator.wait_for_everyone()
|
117 |
-
if self.is_main:
|
118 |
-
checkpoint = dict(
|
119 |
-
model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(),
|
120 |
-
optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(),
|
121 |
-
ema_model_state_dict = self.ema_model.state_dict(),
|
122 |
-
scheduler_state_dict = self.scheduler.state_dict(),
|
123 |
-
step = step
|
124 |
-
)
|
125 |
-
if not os.path.exists(self.checkpoint_path):
|
126 |
-
os.makedirs(self.checkpoint_path)
|
127 |
-
if last == True:
|
128 |
-
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
|
129 |
-
print(f"Saved last checkpoint at step {step}")
|
130 |
-
else:
|
131 |
-
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
|
132 |
-
|
133 |
-
def load_checkpoint(self):
|
134 |
-
if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not os.listdir(self.checkpoint_path):
|
135 |
-
return 0
|
136 |
-
|
137 |
-
self.accelerator.wait_for_everyone()
|
138 |
-
if "model_last.pt" in os.listdir(self.checkpoint_path):
|
139 |
-
latest_checkpoint = "model_last.pt"
|
140 |
-
else:
|
141 |
-
latest_checkpoint = sorted([f for f in os.listdir(self.checkpoint_path) if f.endswith('.pt')], key=lambda x: int(''.join(filter(str.isdigit, x))))[-1]
|
142 |
-
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
143 |
-
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
|
144 |
-
|
145 |
-
if self.is_main:
|
146 |
-
self.ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
147 |
-
|
148 |
-
if 'step' in checkpoint:
|
149 |
-
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict'])
|
150 |
-
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict'])
|
151 |
-
if self.scheduler:
|
152 |
-
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
153 |
-
step = checkpoint['step']
|
154 |
-
else:
|
155 |
-
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]}
|
156 |
-
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict'])
|
157 |
-
step = 0
|
158 |
-
|
159 |
-
del checkpoint; gc.collect()
|
160 |
-
return step
|
161 |
-
|
162 |
-
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
163 |
-
|
164 |
-
if exists(resumable_with_seed):
|
165 |
-
generator = torch.Generator()
|
166 |
-
generator.manual_seed(resumable_with_seed)
|
167 |
-
else:
|
168 |
-
generator = None
|
169 |
-
|
170 |
-
if self.batch_size_type == "sample":
|
171 |
-
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True,
|
172 |
-
batch_size=self.batch_size, shuffle=True, generator=generator)
|
173 |
-
elif self.batch_size_type == "frame":
|
174 |
-
self.accelerator.even_batches = False
|
175 |
-
sampler = SequentialSampler(train_dataset)
|
176 |
-
batch_sampler = DynamicBatchSampler(sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False)
|
177 |
-
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True,
|
178 |
-
batch_sampler=batch_sampler)
|
179 |
-
else:
|
180 |
-
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
|
181 |
-
|
182 |
-
# accelerator.prepare() dispatches batches to devices;
|
183 |
-
# which means the length of dataloader calculated before, should consider the number of devices
|
184 |
-
warmup_steps = self.num_warmup_updates * self.accelerator.num_processes # consider a fixed warmup steps while using accelerate multi-gpu ddp
|
185 |
-
# otherwise by default with split_batches=False, warmup steps change with num_processes
|
186 |
-
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
|
187 |
-
decay_steps = total_steps - warmup_steps
|
188 |
-
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
|
189 |
-
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
|
190 |
-
self.scheduler = SequentialLR(self.optimizer,
|
191 |
-
schedulers=[warmup_scheduler, decay_scheduler],
|
192 |
-
milestones=[warmup_steps])
|
193 |
-
train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler) # actual steps = 1 gpu steps / gpus
|
194 |
-
start_step = self.load_checkpoint()
|
195 |
-
global_step = start_step
|
196 |
-
|
197 |
-
if exists(resumable_with_seed):
|
198 |
-
orig_epoch_step = len(train_dataloader)
|
199 |
-
skipped_epoch = int(start_step // orig_epoch_step)
|
200 |
-
skipped_batch = start_step % orig_epoch_step
|
201 |
-
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
|
202 |
-
else:
|
203 |
-
skipped_epoch = 0
|
204 |
-
|
205 |
-
for epoch in range(skipped_epoch, self.epochs):
|
206 |
-
self.model.train()
|
207 |
-
if exists(resumable_with_seed) and epoch == skipped_epoch:
|
208 |
-
progress_bar = tqdm(skipped_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process,
|
209 |
-
initial=skipped_batch, total=orig_epoch_step)
|
210 |
-
else:
|
211 |
-
progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process)
|
212 |
-
|
213 |
-
for batch in progress_bar:
|
214 |
-
with self.accelerator.accumulate(self.model):
|
215 |
-
text_inputs = batch['text']
|
216 |
-
mel_spec = rearrange(batch['mel'], 'b d n -> b n d')
|
217 |
-
mel_lengths = batch["mel_lengths"]
|
218 |
-
|
219 |
-
# TODO. add duration predictor training
|
220 |
-
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
|
221 |
-
dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations'))
|
222 |
-
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step)
|
223 |
-
|
224 |
-
loss, cond, pred = self.model(mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler)
|
225 |
-
self.accelerator.backward(loss)
|
226 |
-
|
227 |
-
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
228 |
-
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
229 |
-
|
230 |
-
self.optimizer.step()
|
231 |
-
self.scheduler.step()
|
232 |
-
self.optimizer.zero_grad()
|
233 |
-
|
234 |
-
if self.is_main:
|
235 |
-
self.ema_model.update()
|
236 |
-
|
237 |
-
global_step += 1
|
238 |
-
|
239 |
-
if self.accelerator.is_local_main_process:
|
240 |
-
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
241 |
-
|
242 |
-
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
243 |
-
|
244 |
-
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
245 |
-
self.save_checkpoint(global_step)
|
246 |
-
|
247 |
-
if global_step % self.last_per_steps == 0:
|
248 |
-
self.save_checkpoint(global_step, last=True)
|
249 |
-
|
250 |
-
self.accelerator.end_training()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|