Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
import supervision as sv | |
def anylize(img): | |
id2label = {k: v['name'] for k,v in categories.items()} | |
box_annotator = sv.BoxAnnotator() | |
image = img | |
with torch.no_grad(): | |
# load image and predict | |
inputs = image_processor(images=image, return_tensors='pt') | |
outputs = model(**inputs) | |
# post-process | |
target_sizes = torch.tensor([image.shape[:2]]) | |
results = image_processor.post_process_object_detection( | |
outputs=outputs, | |
threshold=0.8, | |
target_sizes=target_sizes | |
)[0] | |
# annotate | |
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) | |
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections] | |
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) | |
gr.Interface.load("models/Guy2/AirportSec-100epoch").launch() |