import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection import torch import supervision as sv import json id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'} def anylize(image): with torch.no_grad(): inputs = image_processor(images=image, return_tensors='pt') outputs = model(**inputs) target_sizes = torch.tensor([image.shape[:2]]) results = image_processor.post_process_object_detection( outputs=outputs, threshold=0.8, target_sizes=target_sizes )[0] # annotate detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) out = {} for idx, detection in enumerate(detections): cls = id2label[detection.class_id] confidence = detection.confidence box = detection.xyxy out[str(idx)] = { "box":list(box), "cls":cls, "conf":confidence } #labels = [str([list(xyxy), confidence, id2label[class_id]]) for xyxy, _, confidence, class_id, _ in detections] #json_list = json.dumps(str(labels[0])) return out gr.Interface(fn = anylize, inputs="image", outputs=gr.JSON()).launch()