Spaces:
Sleeping
Sleeping
File size: 1,374 Bytes
a71996e de74aee 134848b 174826a a71996e de74aee e401490 de74aee 134848b de74aee e11d9a1 de74aee e11d9a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
import supervision as sv
import json
import requests
from PIL import Image
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("Guy2/AirportSec-150epoch")
id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'}
def anylize(url):
image = Image.open(requests.get(url, stream=True).raw)
with torch.no_grad():
inputs = image_processor(images=image, return_tensors='pt')
outputs = model(**inputs)
target_sizes = torch.tensor([image.shape[:2]])
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=0.8,
target_sizes=target_sizes
)[0]
# annotate
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5)
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, _, confidence, class_id, _ in detections]
box_annotator = sv.BoxAnnotator()
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
return frame
output = gr.components.Image(type="numpy", label="Output Image")
gr.Interface(fn = anylize, inputs="text", outputs=output).launch()
|