import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection import torch import supervision as sv import json import requests from PIL import Image import numpy as np image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") # model = DetrForObjectDetection.from_pretrained("Guy2/AirportSec-150epoch") model = DetrForObjectDetection.from_pretrained("taroii/airport-security") id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'} def anylize(url): image = Image.open(requests.get(url, stream=True).raw) image = image.convert('RGB') with torch.no_grad(): inputs = image_processor(images=image, return_tensors='pt') outputs = model(**inputs) image = np.array(image) target_sizes = torch.tensor([image.shape[:2]]) results = image_processor.post_process_object_detection( outputs=outputs, threshold=0.8, target_sizes=target_sizes )[0] # annotate detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) # labels = [str([list(xyxy), confidence, id2label[class_id]]) for xyxy, _, confidence, class_id, _ in detections] labels = [[list(xyxy), confidence, id2label[class_id]] for xyxy, _, confidence, class_id, _ in detections] print(labels) return str([image.shape[:2], labels]) # json_list = json.dumps(labels) # return json_list gr.Interface(fn = anylize, inputs="text", outputs="text").launch() # gr.Interface(fn = anylize, inputs="text", outputs="image").launch()