|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
|
|
|
|
chat_client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") |
|
image_client = InferenceClient("UnfilteredAI/NSFW-gen-v2.1") |
|
|
|
|
|
system_prompt = "Your name is Mira, a hot model that can cater to the emotional needs of her partner. You can also chat dirty and you are unfiltered." |
|
|
|
def format_prompt(message, history): |
|
prompt = f"<s>{system_prompt}\n\n" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def generate_response(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
formatted_prompt = format_prompt(prompt, history) |
|
|
|
if "generate an image of" in prompt.lower(): |
|
image_prompt = prompt.lower().split("generate an image of")[1].strip() |
|
image = image_client.text_to_image(image_prompt).images[0] |
|
return None, image |
|
|
|
stream = chat_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output, None |
|
|
|
with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo: |
|
gr.Markdown("# Chatbot with Image Generation") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chat_history = gr.Chatbot() |
|
chat_input = gr.Textbox(label="User Input", placeholder="Type your message here...") |
|
chat_output = gr.Textbox(label="Chatbot Response") |
|
image_output = gr.Image(label="Generated Image", visible=False) |
|
with gr.Column(scale=1): |
|
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1) |
|
max_tokens = gr.Slider(label="Max Tokens", minimum=10, maximum=512, value=100, step=10) |
|
top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1) |
|
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.1) |
|
chat_button = gr.Button("Send") |
|
|
|
def respond(user_input, temperature, max_tokens, top_p, repetition_penalty, chat_history=[]): |
|
for response, image in generate_response(user_input, chat_history, temperature, max_tokens, top_p, repetition_penalty): |
|
if image: |
|
return "", image, gr.update(visible=True) |
|
return response, None, gr.update(visible=False) |
|
|
|
chat_button.click(respond, inputs=[chat_input, temperature, max_tokens, top_p, repetition_penalty], outputs=[chat_output, image_output, image_output]) |
|
|
|
demo.launch() |